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An analysis of Charles Fefferman's proof of the Fundamental Theorem of
Algebra

Abstract
Many peoples' first exploration into more rigorous and formalized mathematics is with their early explorations
in algebra. Much of their time and effort is dedicated to finding roots of polynomials-a challenge that becomes
more increasingly difficult as the degree of the polynomials increases, especially if no real number roots exist.
The Fundamental Theorem of Algebra is used to show that there exists a root, particularly a complex root, for
any nth degree polynomial. After struggling to prove this statement for over 3 centuries, Carl Friedrich Gauss
offered the first fairly complete proof of the theorem in 1799. Further proofs of the theorem were later
developed, which included the short proof by contradiction of Charles Fefferman. First published in the
American Mathematical Monthly in 1967, this complete proof offers a fairly elementary explanation that only
requires an undergraduate understanding of Real Analysis to work through.

This project is a proof analysis of Fefferman's proof for the Fundamental Theorem of Algebra. In this analysis,
rigorous detail of the proof is offered as well as an explanation of the purpose behind certain sections and how
they help to show the existence of a complex root for nth degree polynomials. It is the goal of this project to
work with Fefferman's proof to develop a clearer explanation of the theorem and how it is able to show this
property.
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Abstract 

Many peoples' first exploration into more rigorous and formalized mathematics 

is with their early explorations in algebra. Much of their time and effort is dedicated to 

finding roots of polynomials-a challenge that becomes more increasingly difficult as 

the degree of the polynomials increases, especially if no real number roots exist. The 

Fundamental Theorem of Algebra is used to show that there exists a root, particularly a 

complex root, for any nth degree polynomial. After struggling to prove this statement 

for over 3 centuries, Carl Friedrich Gauss offered the first fairly complete proof of the 

theorem in 1799. Further proofs of the theorem were later developed, which included 

the short proof by contradiction of Charles Fefferman. First published in the American 

Mathematical Monthly in 1967, this complete proof offers a fairly elementary 

explanation that only requires an undergraduate understanding of Real Analysis to work 

through. 

This project is a proof analysis of Fefferman's proof for the Fundamental 

Theorem of Algebra. In this analysis, rigorous detail of the proof is offered as well as an 

explanation of the purpose behind certain sections and how they help to show the 

existence of a complex root for nth degree polynomials. It is the goal of this project to 

work with Fefferman's proof to develop a clearer explanation of the theorem and how it 

is able to show this property. 



Statement of Theorem: Let P(z) = a0+a1z1 
+ ··· + anzn be a complex polynomial. 

Then P has a zero. 
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Explanation of the Theorem: This version of the theorem suggests that for a polynomial 

P(z) with variable z and coefficients (a0, ai, ... , Un) in the complex number field, there 

exists a root such that O = a0+a1z1 + ··· + eznzn can be evaluated. 

Proof Analysis: 

Hypothesis 

• Let P(z) = a0+a1z1 
+ ··· + anzn be a complex polynomial so that 

(a0, ai, ... , an)E C the complex field. 

• We will show that P has a zero. 

• By contradiction, assume that P(z) has no root in C. 

Part 1: We will show that IP(z)I, the modulus of P(z), attains a minimum as z varies 

over the entire complex plane. 

• By our assumption that P(z) has no root in C, it can be said that P(z) is a 

positive degree polynomial in C[z]. 

• It can be said that lim1zl-+colP(z)I = oo for z, a variable with values in C. 

o It is known from calculus that limx-+ao 
1
k = 0 for any positive integer K. 

X 

o Additionally, limlxl-+co lxk I = oo and limlxl-+co lx
1

kl = lim1xl-+m l
x
�I = 0 for 

any positive integer K. 

o Taking limlzl-+oolP(z)I, substitution can be used to say lim1zl-+colP(z)I = 



o Factoring out lanznl, the limit can be rewritten as 

o Rewriting the limit again, it can be said that lim1z1-.oolP(z)I 

zlnl· 

o As previously shown with limx-uxi � = 0, the portion of the limit, 
X 

an-t 1 a2 1 a1 1 ao 1 h I 1 +--*-+···+-•--+-*--+-•-can be s own to equa an z an zn-2 an zn-1 an zn' 

1 since all other terms involve \ approaching O for all O < i � n. z 

o Additionally, lim lu.nl * lzln = oo as shown from , lim1x1-oolxkl = oo. lzl-+oo 

o Therefore, limlzl-+oo IP(z) I 

I
. I I I In I l an-1 1 a2 1 a1 1 ao = 1m1 , ... n _ _  * z * +--•-+ ···+-•--+-•--+-• z co -n an z an zn-2 an zn-1 an 

2.1 = 
00 n 

• 
z 
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• The limit lim1zl-+co IP(z) I = oo suggests that for each r > 0, where r corresponds 

to the polynomial output, there exists an Mr > 0, corresponding to the z values, 

such that for all z satisfying lzl > Mr we have IP(z)I � r. 

o Because P(z) is a positive degree polynomial in C[z] and we assumed it 

to not have a root, we can say that, by this method, all output values of 

P(z) satisfy that P(z) > 0. 



• Let IP(O)I = r > 0 because we assumed that P(z) is a positive degree 

polynomial with no roots. 

• We can represent a circle centered at the origin (O,O) with a radius Mr by the 

term D. 
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• By the nature of a circle's radius, it can be said that every z E D, which include 

all of the z values that fall within the radius of the circle, will satisfy the condition 

that lzl < Mr. 

o This implies that only the distance of z from the origin is less than or 

equal to the radius of the circle, Mr, The distance of the values for P(z) 

they produce can be greater than, equal to, or less than the circle's 

radius. 

• Similarly, each z (£.. D, which includes all of the z values that fall outside of the 

radius of the circle, satisfy IP(z)I � r = IP{O)J since each z ED satisfies 

lzl > Mr . 

o This implies that all values of P(z), which are output values of the 

polynomial, are more farther from the origin than r because as z 

increases, P(z) will become farther away from the origin and have a 

distance greater than Mr. 

o This fact can be seen by noticing that the point P(z) is on the line x = z 

in the Cartesian plane. Since lzl > Mr and thus outside of the circle, the 

value of P(z) must also be outside of the circle. This implies that P(z) is 

farther than Mr distance from the origin. 



• Now take IPI: D � R';?.0 where Dis the circle from before. 
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• Because P(z) is a positive degree polynomial in C[z] for C the complex numbers , 

IPI: D � R�0 is a continuous function from elements inside the region and on 

any circle D to the non-negative real numbers R�0• 

o These elements in or on D can be expressed as D = {a+ bl I l(a + bl) -

(H + KI)I s; r} for r the radius of the disk with center at (H, K). 

• Then by the Maximum-Minimum Theorem there are complex numbers 

z0, zd E D where IP(z0)1 is the minimum value of IP(z)I on the disk D and 

IP(zd)I is the maximum value of IP(z)I on the disk 0. 

• This implies that there exists some complex number z0 in D so that IP(z0)1 is the 

minimum value of the function IP(z) I for all z in D. 

o This implies that for all z in D, IP(z0)1 < IP(z)I. 

• Additionally , it can be said that IP(z0)1 < IP(z)I for z = 0 ,  the center of D, since 

IP(O)I does not have to be the minimum. 

• This statement can be extended beyond all z � D to say that IP(z0)1 < IP(z)I 

for all z EC. 

o Because we have IP(z0)1 < IP(O)J and for all� D IP(O)I s; IP(z)I, the 

transitive property can be used to say IP(z0)1 < IP(O)I = r < IP(z)I. 



Part 2: We will show that if IP(z0)1 is the minimum of IP(z)J, then P(z0) = 0 meaning 

that P(z0) is a root of the polynomial. 

• Let Q(z) be a complex polynomial such that Q(z) = P(z + z0). 

• By definition of a polynomial, we can write this polynomial as 

Q(z) = anzn 
+ Un-izn-l + ··· + alzl 

+ a0 where Q(z) has the same degree as 

P(z), a0 :I= 0 is the constant term of Q(z), and alz
l is the lowest positive order 

term of Q(z) with al :I= 0. 
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• Rewriting Q(z) again, we can say Q(z) = zL+i * T(z) + UtX
L 
+ a0 where T(z) is 

another polynomial in C[z] which may be the constant O polynomial. 

o The inclusion of zL+i is necessary to increase the terms of T(z) by l + 1 

degree since they will start lower and increase to a different amount than 

the degree n. 

• Let w be any complex number where, when evaluated in the polynomial, the 

o Solving this expression for w, it can be said that w is the Lth root of -ao, 
a1 

which can be computed since al :I= 0 by how we constructed Q(z). 

• Define a new continuous function f(t) = IT(t * w)I for all t in [0,1] where 

f: [0,1] -+ R�0• 

• By the Maximum-Minimum Theorem, it can be said that there is a value 

d E [0,1] so that M = f(d) if the maximum value off. 

• Let there be some real number E in the interval [0,1] so that O < E < 1. 

• Choose this number to be sufficiently small so that E * lwll+1 * M < la0 1. 



• Take Q(E * w) for Q(z). 

• By how Q(z) was rewritten, we can evaluate 

Q(E * w) = (EL+1 * wl+1 ) * T(E * w) + at * (EL * wL) + a0 . 

• Taking the modulus, it can be said that 

IQ(e * w)I = l(el+1 * w'+i) * T(E * w) + ai * (e' * wl) + a0 1 

• By the Triangle Inequality, it can be said that 

l(EL+1 * wl+1 ) * T(E * w) + al *(El * wL) + a01 

< (Et+i 
* lwlL+l ) * IT(E * w)I + lat * (el * wt)+ aol, 

o The Triangle Inequality shows that a,p E C, la+ Pl< lal + IPI, 

o Note that it is not necessary to take the modulus of El+1 since it is 

already positive from our assumption that O < E < 1. 

• We can rewrite EL+1 as EL * E since el+1 just implies that E is just multiplied by 

itself l times and then an extra time after that. 

• Additionally, because the entries of the polynomial are all elements of the 

complex field, C, and all fields have commutative and associative multiplication, 

the terms in lat* (El * wl) + a0 1 can be rearranged such that lat* wL *El+ 

aol, 

• By our assumption about w where alwl = -a0, we can use substitution to say 

that 

lat * (e' * wl) + a01 = lat * wt * El+ a01 = l-a0 * El 
+ a01. 

• Thus, it can be said that (eL+l * lwJl+l ) * IT(E * w)I + lat * (El * w1) + aol 

= (EL * E * lwll+l) * IT(e * w)I + 1-ao *el+ aol-
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• Because we defined M to be the maximum value of the function produced by 

f(t) = IT(t * w)I on the interval [0,1], we can say that M > IT(t * w)I. 

• Using substitution, it can be said that (El * E * lwJl+l) * IT(E * w)I + 

l-a0 * E1 
+ a0 1 < (El * E * lwl1+1) * M + l-a0 * EL+ a0 1. 

• Similarly, by our assumption that E * lwll+l * M < la0 1, we can use substitution 

to say that (E1 * E * lwl1+1) * M + l-a0 * EL+ a0 1 < (E1 * la01) + 1-ao * El+ 

aol 

o Note that we are able to rearrange (EL * E * lwll+1) * M to be 

Et * (E * lwJl+1 * M) because these are all entries in the complex field, 

and multiplication under a field is associative. 

• Factoring out the laol, it can be said that (E1 
* E * lwlL+1) * M + l-a0 * E1 

+ 

aol <(EL * laoD + la0 1 * (1 - EL). 

• Factoring out laol again, it can be simplified to la0 1 * [E1 
+ (1 - E1)]. 

• Because the terms are elements of the complex field and addition is associative 

in the field, the terms can be rearranged to say la0 1 * [E1 
+ (1 - El)] = la0 1 * 

[El+ (-El)+ 1)] = laol-

• By how we defined the polynomial Q(z), it can be said that la0 1 = IQ(O)I. 

• Additionally, this implies that IQ(O)I = IP(O + z0)1 = JP(z0)1, the minimum of 

the polynomial. 

• It can be said that IP(z0)1  < IP(E * w + z0)1. 

• Again, because Q(z) = P(z + z0), IP(E * w + z0)J = IQ(E * w)I. 
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• Combining the expressions, it can be said that 

IQ(E * w)I 

= l(El+t * w1+1) * T(E * w) + a1 * (E1 * wL) + a0 1 

< (E1 * laoD + laol * (1- EL) 

= laol 

= IQ(O)\ 

= IP(zo)I 

< IQ(E+w)I. 

• Thus, IQ(E * w)I < IQ(E + w)I. 

10 

• However, this cannot be true since no real number can be less than itself. This is 

the contradiction that is produced. 

• Thus, it cannot be said that a0 * 0. 

• Therefore, a0 = 0. 

• Thus, Q(O) = 0. 

• Because Q(z) = P(z + z0), it can be said that O = Q(O) = P(O + z0) = P(z0). 

• Thus, there exists a root for P(z) in the complex field, C. 

QED 



Bibliography 

Fefferman, C. L. (1967). An Easy Proof of the Fundamental Theorem of Algebra. The 

American Mathematical Monthly, 74(7), 854-855. Retrieved from 

http://www.jstor.org/stable/2315823. 

11 


	Eastern Michigan University
	DigitalCommons@EMU
	2016

	An analysis of Charles Fefferman's proof of the Fundamental Theorem of Algebra
	Kyle O. Linford
	Recommended Citation

	An analysis of Charles Fefferman's proof of the Fundamental Theorem of Algebra
	Abstract
	Degree Type
	Department
	First Advisor
	Second Advisor
	Keywords
	Subject Categories


	tmp.1481553039.pdf.XOQ2B

