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Abstract 

Algae can stimulate the production of heterotrophic microbes in periphyton communities, but the 

synergistic effects of light and temperature on this phenomenon are not well understood and have 

implications on carbon cycling and energy flow.  We employed recirculating mesocosms held at 

different temperatures and light levels and filled with Typha litter and attached microbes to 

assess these effects.  Heterotrophic microbial production was greater in the presence of light, as 

were some periphytic enzyme activities.  Few response variables increased in a near-linear 

fashion with ascending temperature, suggesting different temperature optima. The strength of 

heterotrophic microbial production responses to algal photosynthesis did not vary with respect to 

temperature, but some enzyme activities did.  The magnitude of light stimulation of bacterial 

production and several enzymatic activities were positively correlated, suggesting a similar 

driving mechanism.  These findings advance our limited understanding of the synergistic effects 

of light and temperature on microbial communities. 
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1. Introduction 

Microbes are integral components of freshwater systems.  Algae and heterotrophic 

bacteria are often the primary producers and decomposers, respectively, of the ecosystems they 

inhabit (Ramanan et al. 2016).  Algae, as photoautotrophs, are responsible for much of the 

photosynthesis and therefore much of the atmospheric oxygen on the planet (Field et al. 1998).  

They often compose the majority of primary production in the freshwater systems they inhabit 

which, along with inputs of terrestrially derived organic matter, supports the heterotrophic life in 

those systems.  For example, in the Great Lakes, invertebrates like zooplankton and invasive 

zebra mussels, as well as larger animals like fish and even snapping turtles, consume algae 

(Kannan et al. 2005).  Bacteria are often major decomposers in the ecosystems they inhabit, and 

their decomposition of organic matter is an important driver of aquatic energy flow and nutrient 

cycling (Webster and Benfield 1986).  Fungi are also involved in the decomposition of organic 

matter in freshwater; in terms of plant litter decomposition, fungi are actually far more important 

than bacteria (Kuehn 2016).  Dead plant material begins to lose organic and inorganic materials 

shortly after immersion into water due to leaching.  Material is then colonized by microbes, with 

fungi dominating early colonization, gradually giving way to bacteria as decay advances 

(Webster and Benfield 1986).  While bacteria are unicellular and can therefore only decompose 

the area of litter to which they are attached, fungi grow as branching networks of hyphae which 

allows them to penetrate larger pieces of material (Kuehn 2016).  Together, fungi and bacteria 

allow for essential nutrient cycling and energy flow through decomposition in freshwater 

systems. 

 Algae, bacteria, and fungi are involved in numerous symbiotic relationships in freshwater 

ecosystems.  Decaying plant litter in aquatic ecosystems often harbors autotrophic and 
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heterotrophic microorganisms, providing a surface upon which algae, bacteria, and fungi (as well 

as protists) often form complex biofilms (Battin et al. 2007).  These biofilms can be major 

contributors to primary production as well as decomposition in aquatic environments.  The close 

spatial proximity of the microorganisms in these biofilms on decaying plant litter suggests the 

potential for interactions between specific microorganisms present (Kuehn et al. 2014).  

Antagonistic (Wohl and McArthur 2001; Gulis and Suberkropp 2003; Mille-Lindblom and 

Tranvik 2003; Mille-Lindblom et al. 2006; Romaní et al. 2006; Baschien et al. 2009), neutral 

(Das et al. 2012), and positive (Bengtsson 1992; Romaní et al. 2006) interactions between litter-

associated bacteria and fungi have all been documented.  These studies did not, however, 

account for the presence of algae.  Studies assessing interactions among naturally developed 

microbial communities on decaying plant litter (which include algae) have yielded results that 

may better indicate real-world aquatic microbial interactions.  For example, rates of bacterial 

growth in periphytic communities are enhanced in the presence of photosynthesis (Neely and 

Wetzel 1995; Scott et al. 2008).  Rates of fungal growth are also often strongly enhanced by 

active photosynthesis (Kuehn et al. 2014; Halvorson et al. 2018; Francoeur et al. 2019).  

Additionally, several studies have found that light availability rapidly increases the activities of 

some heterotrophic extracellular degradative enzymes in periphyton (Francoeur and Wetzel 

2003; Francoeur et al. 2006; Rier et al. 2007; Ylla et al. 2009).   

Although direct photolysis of organic matter is widely accepted as a driving force for 

decomposition (King et al. 2012) and stimulation of heterotrophic microbes (Delange et al. 

2003), enhanced decomposition of plant litter via algal stimulation of heterotrophic microbial 

activities has only been considered more recently.  Plant litter decomposition can be altered by 

the presence of algae (Franken et al. 2005; Lagrue et al. 2011; Danger et al. 2013; Albariño et al. 

https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/13-0430.1#i0012-9658-95-3-749-Wohl1
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/13-0430.1#i0012-9658-95-3-749-Gulis2
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/13-0430.1#i0012-9658-95-3-749-MilleLindblom2
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/13-0430.1#i0012-9658-95-3-749-MilleLindblom2
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/13-0430.1#i0012-9658-95-3-749-MilleLindblom1
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/13-0430.1#i0012-9658-95-3-749-Romani1
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/13-0430.1#i0012-9658-95-3-749-Baschien1
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/13-0430.1#i0012-9658-95-3-749-Bengtsson1
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/13-0430.1#i0012-9658-95-3-749-Romani1
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/13-0430.1#i0012-9658-95-3-749-Neely2
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/13-0430.1#i0012-9658-95-3-749-Neely2
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/13-0430.1#i0012-9658-95-3-749-Scott1
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/13-0430.1#i0012-9658-95-3-749-Francoeur4
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/13-0430.1#i0012-9658-95-3-749-Francoeur4
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/13-0430.1#i0012-9658-95-3-749-Francoeur3
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/13-0430.1#i0012-9658-95-3-749-Rier1
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/13-0430.1#i0012-9658-95-3-749-Ylla1
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/13-0430.1#i0012-9658-95-3-749-Franken1
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/13-0430.1#i0012-9658-95-3-749-Lagrue1
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/13-0430.1#i0012-9658-95-3-749-Danger1
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/13-0430.1#i0012-9658-95-3-749-Albarino1
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2008).  This suggests that algal exudates near plant litter may “prime” heterotrophic microbes by 

stimulating their ability to process and mineralize plant matter (see Danger et al. 2013).  

Alternatively, when photosynthesis is active, heterotrophic microbes might shift resource 

utilization from litter to algal exudates, thereby slowing litter decomposition (e.g., “negative 

priming”; see Halvorson et al. 2019a).  Therefore, this priming effect has the potential to alter the 

rate at which plant litter decomposes in the presence of light, which could play a role in nutrient 

cycling.   

   Much of the basic biology of algal-heterotroph relationships remains unknown.  One 

such case is the influence of abiotic conditions, such as temperature, on potential autotroph-

heterotroph microbial interactions.  Growth and metabolic functioning of freshwater microbial 

communities respond favorably to increased temperature until an optimal temperature is reached.  

However, the optimal temperatures for different microbial groups are likely not the same.  For 

example, microalgae tend to grow optimally within a temperature range of 20 and 30 °C (Moejes 

and Moejes 2016), while most aquatic hyphomycetes (aquatic fungi commonly found on 

decaying plant litter) show maximum growth between 15 and 25 ºC (Suberkropp 1984; Sridhar 

and Bärlocher 1993).  This mismatch of temperature optima may be important, as it could have 

implications on the microbial composition of a habitat.  If algal cells proliferate at greater rates 

than bacteria or fungi as temperature increases, then the ratio of autotrophy: heterotrophy would 

be predicted to increase with temperature.  Altered ratios of autotrophic and heterotrophic 

biomass or activity could have interesting implications on various microbial interactions and 

litter decomposition.  Changes in temperature could also alter enzyme activity, for example, 

warmer temperatures have been found to increase the activity of both beta-glucosidase and 

phenol oxidase in freshwater microbial communities (Batista et al. 2017), and different enzymes 

https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/13-0430.1#i0012-9658-95-3-749-Albarino1


LIGHT LEVEL AND TEMPERATURE  4 

 

 
 

may have different thermal optima.  Thus, altered temperature might lead to changes in the 

microbial interactions, nutrient cycling, and organic matter decomposition in an ecosystem. 

With climate change altering weather patterns and leading to an overall warming trend, 

the effects of temperature on microbial community composition is important to address.  

Furthermore, the rates at which ecosystems function is dependent upon microbial communities.  

Knowledge about the functioning of these communities in freshwater is vital to understanding 

the changes that may occur to them.  Similarly, a better knowledge of how temperature affects 

microbial interactions will aid in understanding potential seasonal shifts in these interactions.  

This research may aid in the management of freshwater systems by understanding how changes 

in temperature and light levels affect the composition and functioning of microbial communities. 

 My study employed recirculating mesocosms (held at different temperatures and light 

levels) filled with Typha litter and attached microbes to investigate if temperature would affect 

the growth rates of algal, bacterial, and fungal cells differently, as well as whether the strength of 

heterotrophic microbial responses and enzyme activities to algal activity would vary with respect 

to temperature.  It was hypothesized that the strength of the heterotrophic microbial responses 

would be influenced by algal activity, with heterotrophic activity greater in the light treatment 

mesocosms stimulated by algae (see Kuehn et al. 2014).  Furthermore, it was hypothesized that a 

proportional increase in response variable (autotrophic, heterotrophic, and enzymatic response) 

would be observed with increasing temperature, consistent with the metabolic theory of ecology 

and quantified using a linearized Arrhenius equation.  Finally, it was hypothesized that if 

heterotrophic responses to photosynthesis were controlled by the same mechanism(s), the 

magnitude of stimulation by the light treatment would be correlated across response variables. 
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2. Materials and Methods 

2.1 Experimental Design 

Plant litter pieces (Typha leaf sections) in wire-mesh baskets were placed in four different 

mesocosms: each mesocosm each at a constant temperature of approximately 7 °C, 14 °C, 21 °C, 

and 28 °C.  Each mesocosm had three sections covered by three different types of plexiglass 

allowing passage of three different light treatments: darkness (no light transmission), PAR 

(photosynthetically active radiation; passage of 400–700 nm), and PAR + UV light (passage of 

~200–400 & 400–700 nm) (see Figure 1 for picture of mesocosm setup).  Light was supplied by 

natural sunlight passing through the greenhouse and augmented by electric lamps.  Plant litter 

pieces were submerged for six weeks in Lake Thoreau, Mississippi, to allow for initial microbial 

colonization.  Litter was then collected and transported to the greenhouse to incubate in their 

respective light and temperature mesocosms for five weeks.  After this time (day 35), sampling 

occurred, while remaining plant litter pieces in each mesocosm were allowed to incubate for 

another six weeks, after which time sampling commenced once again (day 77).   

 

 

 

 

 

 

 

 

2.2 Algal Production 

Rates of algal primary productivity were determined from rates of 14C-bicarbonate 

incorporation to determine potential changes across temperature and light level.  From each 

Figure 1. Raceway pond.  Picture 

of a raceway pond used during 

experimentation at the University 

of Alabama.  The plexiglass panels 

covering the separate pool sections 

along with natural and artificial 

overhead light created the PAR, 

PAR + UV and DARK treatments. 
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combination of light level and temperature, two replicates were used. Sterile 20-ml glass 

scintillation vials were filled with two leaf litter pieces, 20 ml of filtered (0.22-µm pore size) 

mesocosm water and 0.0185 MBq H14CO3.  To compensate for non-biological 14C incorporation, 

killed controls (3% v/v formalin) were also included at each light and temperature level.  

Alkalinity and pH were measured to determine inorganic C concentrations in mesocosm water 

used for assays.  Scintillation vials were placed on their sides within the mesocosms for 2 hours 

at appropriate light levels.  Following incubation, all samples were killed with formalin (3% v/v 

final concentration) and placed in darkness.  Samples were subsequently filtered through 0.45-

µm cellulose filters; 5 ml filtrate was collected and frozen to determine dissolved organic 14C.  

Both the litter and filter were stored frozen (−20 °C) to determine particulate organic 14C.  In a 

previous experiment, we found that killing algal production samples with formalin before 

filtering caused as much as 7-fold over-estimation of C exudation measured in filtrate; thus, we 

used the sum of dissolved and particulate fractions to calculate total algal production rates.  

Later, filtrate samples were thawed, acidified to pH 2 using hydrochloric acid to remove 

inorganic 14C, re-frozen and lyophilised.  Resultant carbohydrate was dissolved in 0.1 ml, 0.5 M 

sodium hydroxide and suspended in 10 ml scintillation fluid (Ecolume).  Particulate samples 

were lyophilised, litter weighed and fumed with concentrated hydrochloric acid for 10 min to 

remove residual inorganic 14C (Wetzel and Likens, 2000).  Litter and filters were placed into 

sterile 15 ml polypropylene conical tubes, and digested in 5 ml of 0.5 M NaOH for 1 hour at     

80 °C. Samples of extract (100 µl) were mixed with an equal volume of 50% H2O2, and then 

combined with 10 ml of scintillation fluid (Ecolume).  Radioactivity in all samples was 

quantified as disintegrations/min using a Beckman LS6500 Scintillation Counter, correcting for 

quenching and radioactivity in killed controls.  Algal production rates were determined as the 
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sum of rates of C produced as dissolved and particulate fractions following protocols outlined in 

Wetzel and Likens (2000).   

2.3 Chlorophyll a Analysis 

Chlorophyll a analysis was performed on samples of known size (approximately 1.7 cm 

long, 1 cm wide) from each mesocosm to determine potential changes across temperature and 

light level, as chlorophyll a is a common measure for algal biomass.  Frozen Typha samples were 

placed in 5 mL of 90% ethanol and allowed to boil in a heat block at 80 °C for five minutes.  

Samples were then refrigerated at 4 °C overnight before centrifuging for five minutes.  One 

milliliter of sample was then placed in a 1 cm cuvette and absorbance was measured in a mass 

spectrophotometer at 665 and 750 nm.  Then, 0.1 mL of 0.3 M HCl was added to account for 

degraded chlorophyll a (phaeopigments) (Francoeur et al. 2013). Samples were then read again 

at each wavelength.  Upon analysis, calculations were then commenced as follows:    

Chlorophyll a (mg/sample) = (Abefore – Aafter) x 28.66 x volume of EtOH,  

Where: 

o Abefore is the absorbance @ 665 nm before acidification – absorbance @ 750 nm before 

acidification. 

o Aafter is the absorbance @ 665 nm after acidification – absorbance @ 750 nm after 

acidification. 

o The absorption coefficient for chlorophyll a is 28.66 (based on absorption coefficient of 

83.4 g/l/cm and an acid ratio of 1.72; see Sartory and Grobelaar 1984). 

The measurement obtained was then divided by the size of each plant litter piece (in meters) to 

determine chlorophyll a concentration on each litter piece.   
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2.4 Algal Community Composition 

Algal community composition was determined to assess potential changes in the relative 

abundances of taxa present across temperature and light level.  Samples from each mesocosm 

were placed in 5% glutaraldehyde for preservation.  Samples were later rinsed of preservative, 

and a wet mount of each sample was made.  Wet mounts were observed under a light microscope 

(at 400X magnification) to obtain a community composition of each sample in order to gain an 

idea of the relative abundancies of taxa present, using the taxonomy of Wehr and Sheath (2003), 

usually to the genus level, by counting cells from each taxon observed in each wet mount and 

then dividing by the total number of cells counted (at least 300 per sample) to obtain a relative 

frequency of each taxon present (see Francoeur et al. 2013).   

2.5 Bacterial Abundance, Biomass, and Production  

To assess potential changes across temperature and light level, and to determine whether 

response would be influenced by algal activity, bacterial abundance, biomass, and production 

were determined.  On each date (days 35 and 77), two litter pieces from each replicate were 

preserved in 10 ml 2% (v/v) sodium pyrophosphate (0.1% w/v) buffered formalin and stored in 

darkness at 4 °C to determine bacterial biomass.  All samples were sonicated using a Branson 

150 Sonicator at setting 4 for 4 × 20 s intervals. Subsamples of 0.5 ml solution were sieved 

through 70-µm strainers (Miltenyi Biotec, Cologne, Germany) to remove coarse debris and then 

diluted with 4.5 mL phosphate-buffered saline.  Diluted samples were vortexed, microbeads and 

bacterial cell stain were added following methods of the Invitrogen bacteria counting kit for flow 

cytometry (Thermo Fisher, Waltham, MA), and samples were analyzed using a BD LSRFortessa 

Cell Analyzer (flow rate = 400 events s-1; fluorescence measured using a fluorescein [FITC] 

channel with a 530-nm bandpass filter). Based on dyed controls containing only microbeads, 

counted bacterial cells were counted as those with fluorescence above microbeads (FITC <103); 
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cells larger than microbeads (diameter 6 µm; forward scatter >2 × 102) were excluded.  Because 

flow cytometry underestimates bacterial counts determined by epifluorescence microscopy 

(Frossard et al. 2016), counts were corrected using an empirically-determined equation of 

corrected count = 4.05 x (flow cytometry count) + 2.44 x 107 cells (R2=0.92).  Corrected cell 

counts were converted from cells mL-1 to cells g-1 detrital C based on average litter piece dry 

mass and %C content.  

Bacterial production rates were also quantified on each date using incorporation of [4,5-

3H] leucine into bacterial protein (Gillies et al. 2006).  Two litter pieces from each replicate were 

incubated in 20 mL sterile glass scintillation vials containing 4 mL filtered (0.22-µm pore) 

mesocosm water and 2.5 µM [4,5-3H] leucine (specific activity = 586 mCi mmol-1).  Vials were 

sealed and placed into floating containers immersed at the appropriate temperature and light 

treatment in the greenhouse.  Killed controls containing 5% v/v trichloroacetic acid (TCA) were 

also run to correct for nonbiological 3H-leucine incorporation.  After 30 min, leucine 

incorporation was stopped by addition of TCA (5% v/v final concentration) and samples were 

heated at 80 °C for 30 min.  Samples were stored in darkness at 4 °C and subsequently processed 

to quantify radioactivity following protocols outlined in Gillies et al. (2006); instead of filtering 

samples, protein was rinsed, centrifuged, and supernatant was removed after each centrifugation. 

Bacterial production was calculated as µg bacterial C g−1 detrital C hr−1 using the conversion 

factors of 1.44 kg C produced mol-1 leucine incorporated (Buesing and Marxsen 2005). 

2.6 Fungal Biomass, Growth, and Production 

Fungal responses were determined to assess potential changes across temperature and 

light level and to determine whether response would be influenced by algal activity.  Fungal 

biomass and production were determined on each date (days 35 and 77) using ergosterol and [1-
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14C]-acetate incorporation into ergosterol, respectively (Suberkropp and Gessner 2005).  Two 

litter pieces from each replicate were placed in 20-ml sterile glass scintillation vials containing 

4 ml filtered (0.22-µm pore) mesocosm water and 5 mM Na[1-14C]-acetate (specific 

activity = 1.31 mCi mmol-1), and incubated in floating containers at the appropriate temperature 

and light level in the greenhouse for 5 hr.  Killed controls containing formalin (2% v/v) were 

used to determine nonbiological 14C-acetate incorporation.  Incorporation of [1-14C]-acetate was 

stopped by placing vials on ice and immediately filtering using 1.2-µm pore glass fiber filters. 

Filters and litter pieces were rinsed twice with 4 mL filtered water and stored frozen (−20 °C) 

until extraction.  Samples were lyophilized, weighed and ergosterol extracted in methanolic 

KOH (8 g L-1 KOH, HPLC-grade methanol, extraction volume 10 ml) for 30 min at 80 °C.  The 

resultant extract was cleaned by repeated extractions into pentane, followed by evaporation 

under N2 gas (Newell et al. 1988).  Ergosterol was suspended in 1 mL methanol and quantified 

by HPLC following methods of Gessner (2005) and ergosterol fractions eluting from the HPLC 

were collected in scintillation vials and mixed with 10 ml scintillation fluid (Ecolume, MP 

Biomedicals, Santa Ana, CA).  Sample radioactivity (disintegrations per minute) was assayed 

using a Beckman LS6500 Scintillation Counter after correcting for quenching and radioactivity 

in killed controls.  Ergosterol concentrations were converted to fungal C assuming 5 µg 

ergosterol mg-1 fungal dry mass and 43% C of fungi (Findlay, Dye, and Kuehn 2002; Gessner 

and Newell 2002; Kuehn et al. 2014).  Rates of fungal 14C‐acetate incorporation were converted 

to growth rates (% hr-1) using the conversion 12.6 µg fungal biomass nmol-1 acetate incorporated 

(Gessner and Newell 2002).  Fungal production rates were calculated by multiplying fungal 

growth rate by fungal biomass.  
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2.7 Enzyme Activity  

Substrate degradation assays were performed in order to ascertain the activity of five 

enzymes (beta-glucosidase, beta-xylosidase, leucine aminopeptidase, phosphatase, phenol 

oxidase) known to be active in degradation, and to assess the influence of temperature and light 

level.  By adding a known saturating amount of fluorogenic substrate, we can estimate the 

activity (Vmax) of these enzymes (except phenol oxidase) by its subsequent breakdown.  

Replicate sections of litter from each mesocosm were placed into autoclaved glass vials 

containing 3 mL of saturating concentrations of the appropriate fluorogenic substrate to 

determine the rates of enzyme activity at this concentration.  To measure phenol oxidase activity, 

1 litter piece from each replicate was placed into 3 ml of a solution containing 2.5 mM L-1 3,4-

dihydroxyphenylalanine (L-DOPA; Pind, Freeman, and Lock 1994).  Vials were then incubated 

in in their respective raceway ponds at ambient temperature and light level for 30 minutes (60 

minutes for phenol oxidase).  After incubation, aliquots were removed from vials and placed in 

boiling water for 5 minutes to halt enzyme activity.   A 100-mL aliquot from each boiled sample 

was then added to 100 mL of pH 10 carbonate/bicarbonate buffer (pHydrion) in individual wells 

of a black 96-well plate and fluorescence were measured by using a Fluoroskan Ascent plate 

reader.  From phenol oxidase assay vials, 1-ml subsamples were pulled and centrifuged, and 200 

μl subsamples were immediately transferred into individual wells of a clear 96-well plate. 

Absorbance was measured at 460 nm using a BioTek Gen5 plate reader and converted to 

concentrations using a molar extinction coefficient of 7.9 μmol-1.  Reaction velocities were then 

determined by dividing the amount of substrate hydrolyzed by litter area and incubation time 

(Francoeur et al. 2006). 
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2.8 Water Chemistry and Experimental Measurements  

Dissolved nutrients were measured in mesocosm at three separate dates (days 1, 35, and 

77).  After filtration (1-micron glass fiber filter, Pall A/E), nutrient samples were frozen for 

storage. Analysis of thawed nutrient samples was conducted on a Seal AQ-2 discrete analyzer 

according to EPA-approved manufacturer’s protocols for NO3, NH4, and SRP (Seal 

Analytical 2015).  Alkalinity (mg L-1 CaCO3) and pH was measured in each mesocosm at each 

of the four sampling dates (1/5 - 1/6/2018 & 2/23 - 2/24/2018) using standard methods (APHA 

1992) (see Appendix).  Conductivity (µS cm-1) and dissolved oxygen concentration (mg L-1) of 

each mesocosm were measured at three separate dates using a YSI Professional Plus 

multiparameter probe (see Appendix).  Water temperature in each mesocosm was measured 

every 30 minutes throughout experimentation using HOBO onset logger interfaces.  Weekly 

mean values for each temperature were then calculated for each of the 11 weeks of deployment 

and displayed graphically (generally well-controlled—see Appendix).   

PAR transmittance through the PAR, PAR +UV, and dark treatment plexiglass panels 

was quantified using an Apogee MQ-200 quantum meter on day 11 of experimentation (see 

Appendix). 
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3. Data Analysis 

3.1 Metabolic Rate and Enzyme Activity across Day, Light, and Temperature 

In order to determine potential changes of rates of production across day, temperature, 

and light level, three-way ANOVAs were performed for each response variable.  Data 

transformations were applied, as needed, to ensure that the assumptions of equality of variance 

and normal distribution were met.  The Bonferoni-Holm correction was applied to the results of 

each three-way ANOVA to protect the overall experimental error rate (see Cramer et al. 2016).  

For each three-way ANOVA, if results showed that differences in the response variables were 

statistically significant, then the Tukey multiple comparison test was performed in order to 

determine which treatment(s) differed.  This analysis was performed for the following response 

variables: total photosynthetic rate, bacterial production, fungal production, beta-glucosidase 

activity, beta-xylosidase activity, leucine aminopeptidase activity, phosphatase activity, and 

phenol oxidase activity.  However, since only a single mesocosm was assigned to each 

temperature treatment, the effects of temperature and mesocosm identity are not independent (i.e. 

pseudoreplication, sensu Hurlbert 1984), and so there is no way to differentiate identity of the 

individual mesocosms from the effect of temperature.  Therefore, any apparent temperature 

phenomena detected in this analysis would need further study in order to verify them 

statistically. 

3.2 Quantifying the Effect of Light Saturation  

Log response ratios were calculated on each response ratio in order to quantify the effect 

of algal activity on heterotrophic microbial and enzymatic response.  This was done by 

calculating the logarithm of light (PAR or PAR + UV) values divided by values obtained in the 

dark.  
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3.3 Linearization of Temperature Responses 

The metabolic theory of ecology posits that metabolic rate increases proportionally with 

increasing temperature.  Response variables were measured at different temperatures under 

otherwise identical conditions, and so these variables could be scaled to temperature in an 

exponential form.  A linearized Arrhenius equation was used to quantify the temperature-

response relationships, and linear regression was performed for each response variable.  

Regression intercepts, intercept standard errors, slopes, slope standard errors, and statistical 

significance of regressions were recorded.   

3.4 Correlation of Light Treatments 

To assess the similarity of responses to the PAR and PAR+UV light treatments, 

Pearson’s correlations were performed using the mean logarithmically transformed response 

ratios (PAR/Dark & PAR + UV/Dark) measured on each date for each response variable’s PAR 

and PAR + UV light level.  This was done in order to determine whether individual response 

variables were statistically significantly associated across these two light treatments.   

3.5 Correlation of Heterotrophic Responses to Light 

In order to test the hypothesis that the magnitude of photosynthetic stimulation was 

correlated across response variables, Pearson’s correlations were also performed for each 

response variable combination using each response variable’s mean log-transformed response 

ratio (PAR + UV/Dark) value at each sampling date. 
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4. Results 

4.1 Experimental Conditions  

 Mean temperatures were fairly constant in each mesocosm across experimentation, 

except for the mesocosm at approximately 28 °C during the first week and the mesocosm at 

approximately 7 °C during the first and last weeks of experimentation (see Appendix Figure 1).  

The pH in each mesocosm remained just below 7 throughout experimentation (see Appendix 

Table 1).  Alkalinity was highest in the mesocosm at approximately 14 °C and lowest at 

approximately 21 °C (see Appendix Table 1).  Conductivity was lowest in the mesocosm at 

approximately 7 °C and highest at approximately 14 °C, although no clear temperature-mediated 

trend emerged (see Appendix Table 1).  Dissolved oxygen decreased with increasing temperature 

(see Appendix Table 1).  NO3 and SRP concentrations did not appear to be largely affected by 

mesocosm temperature but decreased greatly throughout experimentation, while NH4 

concentration appeared to neither be temporally or temperature dependent (Table 1).   

4.2 Water Measurements 

Table 1. Dissolved nutrient measurements (µg L-1) across temperature, treatment, and sampling 

date. 

 

Date Target Temperature NO₃ NH₄ P

Day 1 7 202.148 19.073 34.790

Day 35 7 203.001 32.684 5.800

Day 77 7 1.599 5.500 1.411

Day 1 14 204.705 23.249 30.453

Day 35 14 2.475 3.934 2.235

Day 77 14 0.372 4.233 0.622

Day 1 21 203.443 11.633 26.247

Day 35 21 1.932 28.261 5.981

Day 77 21 0.270 10.503 2.638

Day 1 28 205.383 23.000 30.670

Day 35 28 0.396 5.774 1.205

Day 77 28 0.000 13.429 0.537
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4.3 Mesocosm Light Transmittance 

Percent of PAR transmittance of the plexiglass coverings on each mesocosm was fairly 

constant for each light level across mesocosm, with percentages ranging between 82.4 and 99.4 

(Appendix Table 2). 

4.4 Microbial Biomass 

Unsurprisingly, chlorophyll a was much greater in light treatments than in dark, however 

there was little difference between light and dark at 7 °C (Figure 2).  Chlorophyll a in the light 

treatments at 14 °C was greatest at both dates, although the response in the PAR + UV treatment 

at day 77 was much less than the PAR treatment.  Chlorophyll a in the light treatments was fairly 

consistent at 21 and 28 °C during day 35, but the effect of temperature was higher at 28 than     

21 °C during day 77.  There did not appear to be a temporal fluctuation in chlorophyll a 

response, although the effect of time was greater during day 35 than day 77 at 14 °C in the light. 

Bacterial biomass also followed this trend, but much less strongly (Figure 3).  Bacterial 

biomass was generally higher in the light than in the dark, but the differences were not as 

pronounced as differences in chlorophyll a response.  Bacterial biomass was lowest at 7 °C 

during day 35 but was fairly consistent at the other temperatures.  However, bacterial biomass 

did not appear to be temperature-dependent at day 77.  There appeared to be a slight temporal 

variation in bacterial biomass, with measurements being slightly higher across treatments during 

day 77 than day 35. 

Fungal biomass did not appear to depend on light level, as it did not vary greatly between 

light and dark treatments (Figure 4).  Fungal biomass was greatest at 14 °C on both dates, 

although this difference was less pronounced during day 77.  On day 35, there appeared to be a 
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small secondary biomass peak at 28 °C, but by day 77 that was no longer evident and instead 

there was a secondary biomass peak at 7 °C. 

 

Figure 2. Day 35 and 77 mean algal chlorophyll a measurements (mg g-1 litter) across 

temperature and light treatments.  Bars represent mean values ± 1 standard deviation. 
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Figure 3. Day 35 and 77 mean bacterial biomass measurements (mg C g-1 detrial C) across 

temperature and light treatments.  Bars represent mean values ± 1 standard deviation. 
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Figure 4. Day 35 and 77 mean fungal biomass measurements (mg C g-1 detrial C) across 

temperature and light treatments.  Bars represent mean values ± 1 standard deviation.   

 

4.5 Algal Community Composition 

Although not designed to quantify absolute cell densities, microscopal observations suggested 

that algal cells were relatively rare in the dark treatments.  Cyanobacteria and Chlorophyta 

dominated the algal communities (Table 2; Figure 5).  Diatoms were somewhat more common in 

dark treatments. 
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Table 2. Relative abundance (%) of algal cells across treatment. 

 

 

 

 

Figure 5. Day 35 and 77 relative abundances (%) of algal cells across temperature and light 

treatments. 

 

 

 

 

 

 

Treatment D1T7D D1T14D D1T21D D1T28D D1T7PAR D1T7UV D1T14PAR D1T14UV D1T21PAR D1T21UV D1T28PAR D1T28UV

Diatom 23.384 4.155 3.218 3.009 0.000 9.091 0.592 1.986 7.615 5.041 1.306 0.914

Cyanobacteria 0.000 33.807 44.077 36.376 0.000 0.000 60.532 68.193 38.275 45.913 62.545 93.846

Chlorophyta 76.616 62.038 52.705 60.614 100.000 90.909 38.983 29.470 53.689 48.618 33.647 4.910

Treatment D2T7D D2T14D D2T21D D2T28D D2T7PAR D2T7UV D2T14PAR D2T14UV D2T21PAR D2T21UV D2T28PAR D2T28UV

Diatom 11.253 40.125 12.969 16.370 9.178 4.870 1.976 1.755 0.089 0.120 0.011 0.247

Cyanobacteria 58.932 30.963 83.836 82.963 83.647 92.410 77.789 93.348 53.799 25.512 43.200 45.246

Chlorophyta 29.518 28.912 3.195 0.667 7.175 2.720 20.234 4.897 46.114 74.367 56.789 54.490

0

20

40

60

80

100

D D D D PAR UV PAR UV PAR UV PAR UV

7 14 21 28 7 7 14 14 21 21 28 28D
ay

 3
5

 R
el

at
iv

e 
ab

u
n

d
an

ce
 

(%
)

Diatom Cyanobacteria Chlorophyta

0

20

40

60

80

100

D D D D PAR UV PAR UV PAR UV PAR UV

7 14 21 28 7 7 14 14 21 21 28 28D
ay

 7
7

 R
el

at
iv

e 
ab

u
n

d
an

ce
 

(%
)

Diatom Cyanobacteria Chlorophyta



LIGHT LEVEL AND TEMPERATURE  21 

 

 
 

4.6 Response Variables across Day, Light, and Temperature 

 

 

Figure 6. Day 35 and 77 total photosynthetic rates across light level and temperature.  Bars 

represent mean values ± 1 standard deviation.  Letters over bars indicate treatments that did not 

differ significantly. 
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Table 3a. Total photosynthetic rate ANOVA results.  Emboldened p-values represent 

statistically significant values, following Bonferoni-Holm correction. 

 

Table 3b. Total photosynthetic rate Tukey test results.  Groupings represent treatments that did 

not differ significantly. 

 

Total photosynthetic rate was much higher in the light (PAR and PAR+UV) treatments 

than in the dark (p < 0.001) at every temperature (Figure 6, Tables 3a & b).  Photosynthetic rates 

at approximately 14 and 21 °C were similar at both dates, and both saw a substantial increase 

from 7 °C as well, as temperature was found to significantly influence photosynthetic rate (p < 

0.001).  However, rates decreased substantially at approximately 28 °C during day 35 but 

actually increased in the PAR light treatment during day 77.  Overall differences between dates 

were not statistically significant (p = 0.209). 
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Figure 7. Day 35 and 77 bacterial production across light level and temperature.  Bars represent 

mean values ± 1 standard deviation.  Letters over bars indicate treatments that did not differ 

significantly. 
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Table 4a. Bacterial production ANOVA results.  Emboldened p-values represent statistically 

significant values, following Bonferoni-Holm correction. 

 

Table 4b. Bacterial production Tukey test results.  Groupings represent treatments that did not 

differ significantly. 

 

Bacterial production was generally greater in the light than in the dark, with 13 of 16 

light: dark comparisons having greater production in the light treatments than in the dark (Figure 

7).  While the differences in production were not as pronounced as total photosynthetic rate 

across light treatment, light was a significant factor (p = 0.018) (Tables 4a & b).  Temperature 

was found to significantly influence bacterial production (p < 0.001). Rates were higher at 

approximately 14 than at 21 °C during day 35, but otherwise production increased with 

ascending temperature.  There was no significant temporal variation in production (p = 0.392).  

The response of bacterial production to algal activity did not appear to vary with respect to 

temperature (light x temperature, p = 0.515). 
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Figure 8. Day 35 and 77 fungal production across light level and temperature.  Bars represent 

mean values ± 1 standard deviation.  Letters over bars indicate treatments that did not differ 

significantly.  
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Table 5a. Fungal production ANOVA results.  Emboldened p-values represent statistically 

significant values, following Bonferoni-Holm correction. 

 

Table 5b. Fungal production Tukey test results.  Groupings represent treatments that did not 

differ significantly. 

 

Fungal production was generally greater in the light than in the dark (p < 0.001), with 15 

of 16 light: dark comparisons having greater production in the light treatments than in the dark 

(Figure 8, Tables 5a & b).  There did not appear to be much variation in production across 

temperature during day 35, but production was much greater at approximately 7 °C than in the 

other temperature mesocosms during day 77, and temperature was found to be a significant 
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factor (p = 0.002).  Overall, fungal production was significantly greater at day 35 (p < 0.001).  

The response of fungal production to algal activity did not vary with respect to temperature (light 

x temperature, p = 0.019, not significant following Bonferoni-Holm correction). 

  

  

Figure 9. Day 35 and 77 beta-glucosidase activity across light level and temperature.  Bars 

represent mean values ± 1 standard deviation.  Letters over bars indicate treatments that did not 

differ significantly. 
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Table 6a. Beta-glucosidase activity ANOVA results.  Emboldened p-values represent 

statistically significant values, following Bonferoni-Holm correction. 

 

Table 6b. Beta-glucosidase activity Tukey test results.  Groupings represent treatments that did 

not differ significantly. 

 

Beta-glucosidase was generally greater in the dark than in the light (p = 0.005), with 14 

of 16 light: dark comparisons having greater activities in the dark treatments than in the light, 

and so it did not appear that the presence of algae had a positive effect on average beta-

glucosidase activity (Figure 9, Tables 6a & b).  Activity appeared to increase with ascending 

Group A L10 B-Glu (µmol/ g detrial C/ h) Group B L10 B-Glu (µmol/ g detrial C/ h) Group C L10 B-Glu (µmol/ g detrial C/ h) Group D L10 B-Glu (µmol/ g detrial C/ h)

D1T4D 0.825 D1T4UV 0.770 D2T4PAR 0.675 D2T3D 0.649

D1T4UV 0.770 D2T4D 0.744 D2T3D 0.649 D1T4PAR 0.616

D2T4D 0.744 D2T4PAR 0.675 D1T4PAR 0.616 D2T2D 0.607

D2T4PAR 0.675 D2T3D 0.649 D2T2D 0.607 D2T2PAR 0.593

D2T3D 0.649 D1T4PAR 0.616 D2T2PAR 0.593 D2T3PAR 0.562

D1T4PAR 0.616 D2T2D 0.607 D2T3PAR 0.562 D2T4UV 0.547

D2T2D 0.607 D2T2PAR 0.593 D2T4UV 0.547 D2T3UV 0.545

D2T2PAR 0.593 D2T3PAR 0.562 D2T3UV 0.545 D1T2PAR 0.537

D2T3PAR 0.562 D2T4UV 0.547 D1T2PAR 0.537 D1T3D 0.510

D2T4UV 0.547 D2T3UV 0.545 D1T3D 0.510 D1T3UV 0.487

D2T3UV 0.545 D1T2PAR 0.537 D1T3UV 0.487 D1T2D 0.473

D1T2PAR 0.537 D1T3D 0.510 D1T2D 0.473 D1T2UV 0.419

D1T3UV 0.487 D1T2UV 0.419 D1T3PAR 0.414

D1T2D 0.473 D1T3PAR 0.414 D2T2UV 0.392

D2T2UV 0.392 D2T1PAR 0.349

Group E L10 B-Glu (µmol/ g detrial C/ h) Group F L10 B-Glu (µmol/ g detrial C/ h) Group G L10 B-Glu (µmol/ g detrial C/ h) Group H L10 B-Glu (µmol/ g detrial C/ h)

D1T4PAR 0.616 D2T2D 0.607 D2T3PAR 0.562 D1T3D 0.510

D2T2D 0.607 D2T2PAR 0.593 D2T4UV 0.547 D1T3UV 0.487

D2T2PAR 0.593 D2T3PAR 0.562 D2T3UV 0.545 D1T2D 0.473

D2T3PAR 0.562 D2T4UV 0.547 D1T2PAR 0.537 D1T2UV 0.419

D2T4UV 0.547 D2T3UV 0.545 D1T3D 0.510 D1T3PAR 0.414

D2T3UV 0.545 D1T2PAR 0.537 D1T3UV 0.487 D2T2UV 0.392

D1T2PAR 0.537 D1T3D 0.510 D1T2D 0.473 D2T1PAR 0.349

D1T3D 0.510 D1T3UV 0.487 D1T2UV 0.419 D1T1PAR 0.315

D1T3UV 0.487 D1T2D 0.473 D1T3PAR 0.414 D2T1D 0.309

D1T2D 0.473 D1T2UV 0.419 D2T2UV 0.392 D1T1D 0.289

D1T2UV 0.419 D1T3PAR 0.414 D2T1PAR 0.349 D2T1UV 0.280

D1T3PAR 0.414 D2T2UV 0.392 D1T1PAR 0.315 D1T1UV 0.216

D2T2UV 0.392 D2T1PAR 0.349 D2T1D 0.309

D2T1PAR 0.349 D1T1PAR 0.315 D1T1D 0.289

D1T1PAR 0.315 D2T1D 0.309 D2T1UV 0.280
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temperature at both days (p = 0.001), but this increase was more pronounced during day 35.  

There was no significant difference between days (p = 0.156).  The response of beta-glucosidase 

activity to algal activity did not vary with temperature (light x temperature, p = 0.095). 

 

 

Figure 10. Day 35 and 77 beta-xylosidase activity across light level and temperature.  Bars 

represent mean values ± 1 standard deviation.  Letters over bars indicate treatments that did not 

differ significantly. 
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Table 7a. Beta-xylosidase activity ANOVA results.  Emboldened p-values represent statistically 

significant values, following Bonferoni-Holm correction. 

 

Table 7b. Beta-xylosidase activity Tukey test results.  Groupings represent treatments that did 

not differ significantly. 

 

Analysis of Variance

Source Type 3 SS df Mean Squares F-Ratio p-value

DAY 0.154 1 0.154 7.711 0.008

TEMP 1.998 3 0.666 33.371 0.001

LIGHT 0.010 2 0.005 0.254 0.777

Day*TEMP 0.108 3 0.036 1.798 0.16

DAY*LIGHT 0.015 2 0.008 0.383 0.684

TEMP*LIGHT 0.222 6 0.037 1.854 0.108

DAY*TEMP*LIGHT 0.118 6 0.020 0.989 0.443

ERROR 0.958 48 0.020

Group A LOG B-xyl (µmol/ g detrial C/ h) Group B LOG B-xyl (µmol/ g detrial C/ h) Group C LOG B-xyl (µmol/ g detrial C/ h)

D1T4D 0.829 D1T4UV 0.773 D1T4PAR 0.683

D1T4UV 0.773 D1T4PAR 0.683 D1T3UV 0.675

D1T4PAR 0.683 D1T3UV 0.675 D2T3D 0.648

D1T3UV 0.675 D2T3D 0.648 D2T4PAR 0.618

D2T3D 0.648 D2T4PAR 0.618 D2T4D 0.579

D2T4PAR 0.618 D2T4D 0.579 D1T2PAR 0.573

D2T4D 0.579 D1T2PAR 0.573 D1T3D 0.571

D1T2PAR 0.573 D1T3D 0.571 D2T4UV 0.498

D1T3D 0.571 D2T4UV 0.498 D2T3UV 0.449

D2T4UV 0.498 D2T3UV 0.449 D1T2D 0.435

D2T3UV 0.449 D1T2D 0.435 D1T3PAR 0.429

D1T2D 0.435 D1T3PAR 0.429 D2T3PAR 0.412

D1T3PAR 0.429 D2T3PAR 0.412 D2T2PAR 0.374

D2T3PAR 0.412 D2T2PAR 0.374 D1T2UV 0.367

D1T2UV 0.367 D2T2UV 0.320

D2T2D 0.297

D1T1PAR 0.296

D2T1PAR 0.265

Group D LOG B-xyl (µmol/ g detrial C/ h) Group E LOG B-xyl (µmol/ g detrial C/ h) Group F LOG B-xyl (µmol/ g detrial C/ h)

D2T3D 0.648 D2T4PAR 0.618 D2T4D 0.579

D2T4PAR 0.618 D2T4D 0.579 D1T2PAR 0.573

D2T4D 0.579 D1T2PAR 0.573 D1T3D 0.571

D1T2PAR 0.573 D1T3D 0.571 D2T4UV 0.498

D1T3D 0.571 D2T4UV 0.498 D2T3UV 0.449

D2T4UV 0.498 D2T3UV 0.449 D1T2D 0.435

D2T3UV 0.449 D1T2D 0.435 D1T3PAR 0.429

D1T2D 0.435 D1T3PAR 0.429 D2T3PAR 0.412

D1T3PAR 0.429 D2T3PAR 0.412 D2T2PAR 0.374

D2T3PAR 0.412 D2T2PAR 0.374 D1T2UV 0.367

D2T2PAR 0.374 D1T2UV 0.367 D2T2UV 0.320

D1T2UV 0.367 D2T2UV 0.320 D2T2D 0.297

D2T2UV 0.320 D2T2D 0.297 D1T1PAR 0.296

D2T2D 0.297 D1T1PAR 0.296 D2T1PAR 0.265

D1T1PAR 0.296 D2T1PAR 0.265 D2T1UV 0.203

D2T1PAR 0.265 D2T1UV 0.203 D2T1D 0.188

D2T1UV 0.203 D2T1D 0.188 D1T1UV 0.188

D1T1UV 0.188 D1T1D 0.143
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Light did not significantly affect beta-xylosidase activity (p = 0.777) (Figure 10, Tables 

7a & b).  Much like beta-glucosidase activity, beta-xylosidase activity increased with ascending 

temperature (p = 0.001), aside from especially high average activity occurring in the 

approximately 21 °C dark mesocosm during day 77.  However, average activity was significantly 

greater at day 35 than at day 77 (p = 0.008).  The response of beta-xylosidase activity to algal 

activity did not vary with temperature (light x temperature, p = 0.108). 
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Figure 11. Day 35 and 77 leucine aminopeptidase activity across light level and temperature.  

Bars represent mean values ± 1 standard deviation.  Letters over bars indicate treatments that did 

not differ significantly. 
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Table 8a. Leucine aminopeptidase activity ANOVA results.  Emboldened p-values represent 

statistically significant values, following Bonferoni-Holm correction. 

 

Table 8b. Leucine aminopeptidase activity Tukey test results.  Groupings represent treatments 

that did not differ significantly. 

 

Analysis of Variance

Source Type 3 SS df Mean Squares F-Ratio p-value

DAY 0.176 1 0.176 8.256 0.006

TEMP 1.355 3 0.452 21.143 0.001

LIGHT 1.692 2 0.846 39.598 0.001

Day*TEMP 0.568 3 0.189 8.87 0.001

DAY*LIGHT 0.122 2 0.061 2.861 0.067

TEMP*LIGHT 0.448 6 0.075 3.493 0.006

DAY*TEMP*LIGHT 0.233 6 0.039 1.816 0.116

ERROR 1.025 48 0.021

Group A L10 LAMP (µmol/ g detrial C/ h) Group B L10 LAMP (µmol/ g detrial C/ h) Group C L10 LAMP (µmol/ g detrial C/ h) Group D L10 LAMP (µmol/ g detrial C/ h)

D2T4PAR 1.160 D2T4UV 1.101 D2T2UV 1.028 D2T3UV 0.996

D1T4UV 1.144 D2T2UV 1.028 D2T3UV 0.996 D2T3PAR 0.974

D2T4UV 1.101 D2T3UV 0.996 D2T3PAR 0.974 D2T2PAR 0.933

D2T2UV 1.028 D2T3PAR 0.974 D2T2PAR 0.933 D1T2UV 0.918

D2T3UV 0.996 D2T2PAR 0.933 D1T2UV 0.918 D1T2PAR 0.901

D2T3PAR 0.974 D1T2UV 0.918 D1T2PAR 0.901 D2T3D 0.856

D2T2PAR 0.933 D1T2PAR 0.901 D2T3D 0.856 D1T4PAR 0.815

D1T2UV 0.918 D2T3D 0.856 D1T4PAR 0.815 D1T4D 0.778

D1T2PAR 0.901 D1T4PAR 0.815 D1T4D 0.778 D1T1PAR 0.681

D2T3D 0.856 D1T4D 0.778 D1T1PAR 0.681 D2T1PAR 0.639

D1T4PAR 0.815 D1T1PAR 0.681 D2T1PAR 0.639 D1T3PAR 0.621

D1T4D 0.778 D1T3PAR 0.621 D2T1UV 0.589

D2T1UV 0.589 D1T3UV 0.558

Group E L10 LAMP (µmol/ g detrial C/ h) Group F L10 LAMP (µmol/ g detrial C/ h) Group G L10 LAMP (µmol/ g detrial C/ h)

D2T3PAR 0.974 D2T2PAR 0.933 D1T2UV 0.918

D2T2PAR 0.933 D1T2UV 0.918 D1T2PAR 0.901

D1T2UV 0.918 D1T2PAR 0.901 D2T3D 0.856

D1T2PAR 0.901 D2T3D 0.856 D1T4PAR 0.815

D2T3D 0.856 D1T4PAR 0.815 D1T4D 0.778

D1T4PAR 0.815 D1T4D 0.778 D1T1PAR 0.681

D1T4D 0.778 D1T1PAR 0.681 D2T1PAR 0.639

D1T1PAR 0.681 D2T1PAR 0.639 D1T3PAR 0.621

D2T1PAR 0.639 D1T3PAR 0.621 D2T1UV 0.589

D1T3PAR 0.621 D2T1UV 0.589 D1T3UV 0.558

D2T1UV 0.589 D1T3UV 0.558 D1T1UV 0.528

D1T3UV 0.558 D1T1UV 0.528 D2T4D 0.506

D1T1UV 0.528 D2T4D 0.506 D1T1D 0.467

Group H L10 LAMP (µmol/ g detrial C/ h) Group I L10 LAMP (µmol/ g detrial C/ h) Group J L10 LAMP (µmol/ g detrial C/ h)

D1T2PAR 0.901 D2T3D 0.856 D1T1PAR 0.681

D2T3D 0.856 D1T4PAR 0.815 D2T1PAR 0.639

D1T4PAR 0.815 D1T4D 0.778 D1T3PAR 0.621

D1T4D 0.778 D1T1PAR 0.681 D2T1UV 0.589

D1T1PAR 0.681 D2T1PAR 0.639 D1T3UV 0.558

D2T1PAR 0.639 D1T3PAR 0.621 D1T1UV 0.528

D1T3PAR 0.621 D2T1UV 0.589 D2T4D 0.506

D2T1UV 0.589 D1T3UV 0.558 D1T1D 0.467

D1T3UV 0.558 D1T1UV 0.528 D1T2D 0.445

D1T1UV 0.528 D2T4D 0.506 D1T3D 0.440

D2T4D 0.506 D1T1D 0.467 D2T2D 0.410

D1T1D 0.467 D1T2D 0.445 D2T1D 0.294

D1T2D 0.445 D1T3D 0.440

D1T3D 0.440 D2T2D 0.410
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Light significantly affected leucine aminopeptidase activity (p = 0.001), with greater 

activities in the light in all 16 light: dark comparisons (Figure 11, Tables 8a & b).  Temperature 

also affected leucine aminopeptidase activity (p = 0.001).  Average activity was highest at 

approximately 28 °C at the PAR + UV light level during day 35 and at both light levels during 

day 77.  However, activity was lower at approximately 21 than 14 °C during day 35 and was 

roughly equivalent between the two temperatures during day 77.  Leucine aminopeptidase 

activity was significantly greater during day 77 than day 35 (p = 0.006).  The response of leucine 

aminopeptidase activity to algal activity varied with respect to temperature (light x temperature, 

p = 0.006), with the strongest effect of light occurring at 14 and 28 °C. 
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Figure 12. Day 35 and 77 phosphatase activity across light level and temperature.  Bars 

represent mean values ± 1 standard deviation.  Letters over bars indicate treatments that did not 

differ significantly.  
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Table 9a. Phosphatase activity ANOVA results.  Emboldened p-values represent statistically 

significant values, following Bonferoni-Holm correction. 

 

 

Table 9b. Phosphatase activity Tukey test results.  Groupings represent treatments that did not 

differ significantly. 

 

Group A L10 Pase (µmol/ g detrial C/ h) Group B L10 Pase (µmol/ g detrial C/ h) Group C L10 Pase (µmol/ g detrial C/ h)

D2T4UV 1.286 D2T4PAR 1.264 D2T2PAR 1.206

D2T4PAR 1.264 D2T2PAR 1.206 D2T3UV 1.195

D2T2PAR 1.206 D2T3UV 1.195 D2T3PAR 1.194

D2T3UV 1.195 D2T3PAR 1.194 D2T2UV 1.103

D2T3PAR 1.194 D2T2UV 1.103 D1T4UV 1.084

D2T2UV 1.103 D1T4UV 1.084 D2T4D 0.977

D1T4UV 1.084 D2T4D 0.977 D2T1UV 0.950

D2T4D 0.977 D2T1UV 0.950 D1T2PAR 0.932

D2T1UV 0.950 D1T2PAR 0.932 D1T4D 0.922

D1T2PAR 0.932 D1T4D 0.922 D2T3D 0.880

D1T3D 0.879

Group D L10 Pase (µmol/ g detrial C/ h) Group E L10 Pase (µmol/ g detrial C/ h) Group F L10 Pase (µmol/ g detrial C/ h)

D2T3UV 1.195 D2T2UV 1.103 D2T4D 0.977

D2T3PAR 1.194 D1T4UV 1.084 D2T1UV 0.950

D2T2UV 1.103 D2T4D 0.977 D1T2PAR 0.932

D1T4UV 1.084 D2T1UV 0.950 D1T4D 0.922

D2T4D 0.977 D1T2PAR 0.932 D2T3D 0.880

D2T1UV 0.950 D1T4D 0.922 D1T3D 0.879

D1T2PAR 0.932 D2T3D 0.880 D1T4PAR 0.840

D1T4D 0.922 D1T3D 0.879 D1T2UV 0.839

D2T3D 0.880 D1T4PAR 0.840 D2T1PAR 0.819

D1T3D 0.879 D1T2UV 0.839 D1T3UV 0.816

D1T4PAR 0.840 D2T1PAR 0.819 D2T1D 0.807

D1T2UV 0.839 D1T3UV 0.816 D1T2D 0.744

D2T1D 0.807 D1T1D 0.702

D1T2D 0.744 D2T2D 0.650

Group G L10 Pase (µmol/ g detrial C/ h) Group H L10 Pase (µmol/ g detrial C/ h) Group I L10 Pase (µmol/ g detrial C/ h)

D1T4PAR 0.840 D2T1D 0.807 D1T1D 0.702

D1T2UV 0.839 D1T2D 0.744 D2T2D 0.650

D2T1PAR 0.819 D1T1D 0.702 D1T1UV 0.497

D1T3UV 0.816 D2T2D 0.650 D1T3PAR 0.447

D2T1D 0.807 D1T1UV 0.497 D1T1PAR 0.360

D1T2D 0.744 D1T3PAR 0.447

D1T1D 0.702

D2T2D 0.650

D1T1UV 0.497

Analysis of Variance

Source Type 3 SS df Mean Squares F-Ratio p-value

DAY 1.334 1 1.334 105.639 0.001

TEMP 1.272 3 0.424 33.556 0.001

LIGHT 0.277 2 0.139 10.949 0.001

Day*TEMP 0.146 3 0.049 3.865 0.015

DAY*LIGHT 0.657 2 0.329 26.025 0.001

TEMP*LIGHT 0.537 6 0.090 7.080 0.001

DAY*TEMP*LIGHT 0.119 6 0.020 1.566 0.177

ERROR 0.606 48 0.013
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Phosphatase activity was significantly greater in light treatments (p < 0.001) (Figure 12, 

Tables 9a & b).  Although phosphatase activity did not increase at a perfectly linear rate with 

ascending temperature, it did increase significantly with temperature (p < 0.001).  Additionally, 

phosphatase activity was significantly greater during day 77 than day 35 (p < 0.001).  The 

response of phosphatase activity to algal activity varied with respect to temperature (light x 

temperature, p < 0.001), although no clear trends emerged. 
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Figure 13. Day 35 and 77 phenol oxidase activity across light level and temperature.  Bars 

represent mean values ± 1 standard deviation.  Letters over bars indicate treatments that did not 

differ significantly.  
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Table 10a. Phenol oxidase activity ANOVA results.  Emboldened p-values represent statistically 

significant values, following Bonferoni-Holm correction. 

 

Table 10b. Phenol oxidase activity Tukey test results.  Groupings represent treatments that did 

not differ significantly. 

 

 

 Phenol oxidase activity was generally greater under dark conditions than light, with 12 of 

16 light: dark comparisons being greater in dark treatments (Figure 13).  However, light was not 

a significant factor in activity (p = 0.128), and so it did not appear that algal presence had a 

significant effect (Tables 10a & b).  The effect of temperature on phenol oxidase activity was 

Analysis of Variance

Source Type 3 SS df Mean Squares F-Ratio p-value

DAY 0.772 1 0.772 27.601 0.001

TEMP 13.271 3 4.424 158.078 0.001

LIGHT 0.120 2 0.060 2.145 0.128

Day*TEMP 1.247 3 0.416 14.855 0.001

DAY*LIGHT 0.062 2 0.031 1.112 0.337

TEMP*LIGHT 0.529 6 0.088 3.148 0.011

DAY*TEMP*LIGHT 0.587 6 0.098 3.494 0.006

ERROR 1.343 48 0.028

Group A L10 POX (µmol/ g detrial C/ h) Group B L10 POX (µmol/ g detrial C/ h) Group C L10 POX (µmol/ g detrial C/ h)

D2T3D 1.799 D2T1PAR 1.494 D1T1UV 1.366

D2T1D 1.751 D1T1D 1.482 D2T3UV 1.323

D1T3PAR 1.679 D1T1PAR 1.462 D2T3PAR 1.308

D2T1UV 1.628 D1T1UV 1.366 D1T4D 0.998

D1T3D 1.574 D2T3UV 1.323 D1T4UV 0.980

D1T3UV 1.562 D2T3PAR 1.308 D1T2D 0.977

D2T1PAR 1.494 D1T4D 0.998 D1T2PAR 0.905

D1T1D 1.482 D1T4UV 0.980

D1T1PAR 1.462 D1T2D 0.977

D1T1UV 1.366

D2T3UV 1.323

D2T3PAR 1.308

Group D L10 POX (µmol/ g detrial C/ h) Group E L10 POX (µmol/ g detrial C/ h) Group F L10 POX (µmol/ g detrial C/ h)

D1T4D 0.998 D1T2PAR 0.905 D2T2D 0.539

D1T4UV 0.980 D1T4PAR 0.769 D2T2PAR 0.470

D1T2D 0.977 D1T2UV 0.765 D2T2UV 0.419

D1T2PAR 0.905 D2T4UV 0.734 D2T4PAR 0.404

D1T4PAR 0.769 D2T2D 0.539 D2T4D 0.163

D1T2UV 0.765 D2T2PAR 0.470

D2T4UV 0.734 D2T2UV 0.419

D2T2D 0.539 D2T4PAR 0.404

D2T2PAR 0.470
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unique among response variables.  Temperature significantly affected phenol oxidase activity (p 

< 0.001), but was greatest at approximately 7 and 21 °C, and substantially lessened at 14 and       

28 °C.  Although this trend was followed during both days, activity was significantly greater 

during day 77 (p < 0.001).  The response of phenol oxidase activity to algal activity varied with 

respect to temperature (light x temperature, p = 0.011), with response varying the most between 

light and dark treatments at 7 and 21 °C. 

4.7 Quantifying the Effect of Light Exposure 

Total photosynthetic rate, bacterial production, and fungal production were all much 

greater in the light (Figures 14a, b, & c).  Leucine aminopeptidase and phosphatase were 

generally much greater in the light (Figures 14f & g), beta-xylosidase activity was mixed, being 

greater in the light in only 9/16 light: dark comparisons (Figure 14e), and beta-glucosidase and 

phenol oxidase activities were much greater in the dark (Figures 14d & h). 

    

Figure 14a. Total photosynthetic rate log response ratios.  Algal total photosynthetic rate log 

response ratios for each light level (PAR & PAR+UV), at each temperature level (7, 14, 21, & 

28° C), for each sampling date (Days 35 & 77).  Average rates under light conditions were far 

higher than dark conditions in each mesocosm. 
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Figure 14b. Bacterial production log response ratios.  Average bacterial production rates were 

higher under light conditions than dark conditions in 13 of 16 light: dark comparisons, with the 

exceptions being Day 35 PAR at temperatures 7, 21, & 28° C.  

 

Figure 14c. Fungal production log response ratios.  Average fungal production rates were higher 

under light conditions than dark conditions in 15 of 16 light: dark comparisons, with the only 

exception being Day 77 PAR at 21° C. 

 



LIGHT LEVEL AND TEMPERATURE  42 

 

 
 

 

Figure 14d. Beta-glucosidase activity log response ratios.  Average beta-glucosidase activity 

rates were lower under light conditions in 14 of 16 light: dark comparisons, with the only 

exceptions being Day 35 PAR at 14° C and Day 77 PAR at 7° C. 

 

Figure 14e. Beta-xylosidase activity log response ratios.  Beta-xylosidase activity rates were 

fairly split, with 9 of 16 light: dark comparisons having greater activity rates under light 

conditions. 
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Figure 15a. Day 77 PAR bacterial production. 

 

An example of a response variable not closely correlated with ascending temperature is 

day 35 total photosynthetic rate in the PAR light treatment (Figure 15b). 

 

Figure 15b. Day 35 PAR total photosynthetic rate. 
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Table 11a. Day 35 Linearization.  R² values convey how closely response variable 

measurements increased with ascending temperature.  A value of 1 represents perfect correlation.   

 

 

Table 11b. Day 77 Linearization.  R² values convey how closely response variable 

measurements increased with ascending temperature.  A value of 1 represents perfect correlation.  

 

4.9 Correlation of Light Treatments 

To assess the similarity of responses to the PAR and PAR+UV light treatments, 

Pearson’s correlations were performed using the mean logarithmically transformed response 

ratios (PAR/ Dark & PAR + UV/Dark) measured on each date for each response variable (Table 

12).  This was done in order to determine whether individual responses to algal activity/ light 

exposure were statistically significantly associated across these two light treatments.  Log 

TPRD1D TPRD1P TPRD1UV BCPD1D BCPD1P BCPD1UV FPD1D FPD1P FPD1UV BglD1D BglD1P BglD1UV

Intercept -4.018 0.869 14.282 17.81 18.982 15.04 3.351 6.888 6.212 23.366 12.375 26.685

Std. error 7.768 17.321 13.933 7.319 4.301 9.595 4.481 2.675 5.926 4.8 7.251 4.416

Slope 0.142 0.082 -0.243 -0.345 -0.367 -0.277 0.016 -0.065 -0.045 -0.564 -0.292 -0.652

Std. error 0.194 0.433 0.348 0.183 0.107 0.24 0.112 0.067 0.148 0.12 0.181 0.104

m p-value 0.542 0.867 0.557 0.2 0.076 0.367 0.902 0.432 0.789 0.042 0.248 0.024

95% CI (+/-) 0.835 1.863199 1.497444 0.787449 0.460421 1.03272 0.481936 0.288301 0.636844 0.51636 0.778843 0.447512

R² 0.2101 0.0176 0.1964 0.64 0.854 0.4007 0.0097 0.3224 0.0445 0.917 0.5658 0.9519

BxyD1D BxyD1P BxyD1UV LAMD1D LAMD1P LAMD1UV PasD1D PasD1P PasD1UV POXD1D POXD1P POXD1UV

Intercept 27.815 11.148 24.349 10.186 2.197 15.767 10.712 15.008 21.141 -0.4808 -12.708 -0.09

Std. error 5.657 5.994 3.868 5.196 6.732 11.683 1.806 17.514 6.462 15.943 22.266 20.221

Slope -0.71 -0.29 -0.622 -0.223 -0.01 -0.347 -0.225 -0.345 -0.486 0.192 0.386 0.068

Std. error 0.141 0.15 0.097 0.13 0.168 0.292 0.045 0.437 0.161 0.398 0.556 0.505

m p-value 0.037 0.192 0.023 0.228 0.958 0.356 0.038 0.513 0.095 0.678 0.559 0.905

95% CI (+/-) 0.606723 0.64545 0.417391 0.55939 0.722904 1.256476 0.193635 1.880411 0.692783 1.712594 2.392468 2.173015

R² 0.9265 0.6525 0.954 0.5967 0.0017 0.4147 0.9255 0.2374 0.8191 0.1037 0.1943 0.0091

TPRD2D TPRD2P TPRD2UV BCPD2D BCPD2P BCPD2UV FPD2D FPD2P FPD2UV BglD2D BglD2P BglD2UV

Intercept -15.305 17.710 10.049 19.050 18.603 21.520 -1.743 -7.062 -2.008 19.147 14.369 15.894

Std. error 9.709 3.499 2.918 1.820 0.705 1.119 10.828 12.183 7.129 6.484 5.369 3.168

Slope 0.398 -0.332 -0.143 -0.377 -0.360 -0.432 0.132 0.272 0.147 -0.453 -0.336 -0.383

Std. error 0.242 0.087 0.073 0.045 0.018 0.028 0.270 0.304 0.178 0.162 0.134 0.079

m p-value 0.242 0.063 0.189 0.014 0.002 0.004 0.673 0.466 0.496 0.108 0.129 0.040

95% CI (+/-) 1.041 0.374 0.314 0.194 0.077 0.120 1.162 1.308 0.766 0.697 0.577 0.340

R² 0.574 0.878 0.657 0.972 0.995 0.992 0.107 0.285 0.254 0.796 0.759 0.922

BxyD2D BxyD2P BxyD2UV LAMD2D LAMD2P LAMD2UV PasD2D PasD2P PasD2UV POXD2D POXD2P POXD2UV

Intercept 20.059 12.537 13.995 11.708 17.155 15.876 10.184 15.770 13.663 -42.868 -23.353 -14.756

Std. error 5.924 2.178 2.392 9.974 4.525 6.051 6.330 6.033 1.563 43.825 28.848 31.443

Slope -0.519 -0.331 -0.371 -0.262 -0.374 -0.343 -0.210 -0.331 -0.278 1.123 0.632 0.425

Std. error 0.148 0.054 0.060 0.249 0.113 0.151 0.158 0.151 0.039 1.095 0.720 0.785

m p-value 0.072 0.026 0.025 0.403 0.080 0.151 0.315 0.159 0.019 0.413 0.473 0.642

95% CI (+/-) 0.637 0.232 0.258 1.071 0.486 0.650 0.680 0.650 0.168 4.712 3.098 3.378

R² 0.860 0.949 0.951 0.357 0.846 0.720 0.470 0.707 0.962 0.345 0.278 0.128
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response ratios of PAR/Dark and PAR + UV/Dark were significantly positively correlated for 7 

of 8 response variables.  The remaining response variable (total photosynthetic rate) also 

displayed a large positive correlation (r = 0.706), which was just slightly smaller than the critical 

value (r = 0.707). 

Table 12. Pearson’s correlation results between each light levels’ mean logarithmically 

transformed response ratios (PAR/Dark & PAR + UV/Dark), for each response variable.  The 

activities measured at each light treatment were significantly associated (p < 0.05) besides total 

photosynthetic rate (denoted with an *).  However, it is likely that algal activity at the two light 

treatments was significantly associated as it was extremely close (p < 0.10). 

 

4.10 Correlation of Heterotrophic Responses to Light 

Log response ratio values (PAR + UV/Dark) were compared using Pearson’s correlations 

between each response variable in order to determine whether their responses to algal activity 

were significantly associated across temperature and date (Table 13).  Bacterial production was 

found to be significantly positively correlated with the activities of beta-glucosidase, leucine 

aminopeptidase, and phosphatase.  The response of beta-glucosidase activity to algal activity was 

also significantly positively correlated with the responses of beta-xylosidase and leucine 

aminopeptidase activities and was nearly significantly associated with the phosphatase activity 

response.  Lastly, the response of leucine aminopeptidase activity was significantly positively 

correlated with phosphatase and negatively correlated to phenol oxidase responses to algal 

activity.   

Response Variable R Value Critical Value (v = 6) Significantly Associated?

Total Photo. Rate 0.706 0.707 N*

Bac. Production 0.839 0.707 Y

Fung. Production 0.727 0.707 Y

B-Glu Activity 0.798 0.707 Y

B-Xyl Activity 0.818 0.707 Y

LAMP Activity 0.821 0.707 Y

Phos. Activity 0.913 0.707 Y

Phen. Ox. Activity 0.921 0.707 Y
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Table 13. Pearson’s correlation results between response variable log response ratios.  Bacterial 

production response to algal activity was found to be significantly associated (p < 0.05) with the 

responses of three enzyme activities to algal activity, including beta-glucosidase, leucine 

aminopeptidase, and phosphatase.  The response of beta-glucosidase activity to algal activity was 

significantly associated with the responses of beta-xylosidase and leucine aminopeptidase 

activities and was nearly significantly associated with the response of phosphatase activity to 

algal activity.  Lastly, the response of leucine aminopeptidase activity to algal activity was 

significantly associated with the responses of phosphatase and phenol oxidase activities to algal 

activity.   

 

 

 

Response Comparison R Value Critical Value (v = 6) Significantly Associated?

TPR, BCP 0.409 0.707 N

TPR, FP 0.377 0.707 N

TPR, B-glu 0.496 0.707 N

TPR, B-xyl 0.661 0.707 N

TPR, LAMP 0.179 0.707 N

TPR, Pas 0.261 0.707 N

TPR, POX -0.152 0.707 N

BCP, FP -0.219 0.707 N

BCP, B-glu 0.776 0.707 Y

BCP, B-xyl 0.588 0.707 N

BCP, LAMP 0.897 0.707 Y

BCP, Pas 0.831 0.707 Y

BCP, POX -0.549 0.707 N

FP, B-glu 0.006 0.707 N

FP, B-xyl 0.138 0.707 N

FP, LAMP -0.373 0.707 N

FP, Pas -0.454 0.707 N

FP, POX 0.484 0.707 N

B-glu, B-xyl 0.929 0.707 Y

B-glu, LAMP 0.762 0.707 Y

B-glu, Pas 0.682 0.707 N*

B-glu, POX -0.257 0.707 N

B-xyl, LAMP 0.522 0.707 N

B-xyl, Pas 0.471 0.707 N

B-xyl, POX -0.124 0.707 N

LAMP, Pas 0.799 0.707 Y

LAMP, POX -0.715 0.707 Y

Pas, POX -0.434 0.707 N
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5. Discussion  

We found strong evidence that heterotrophic microbial responses were stimulated by 

algal activity, as bacterial production was significantly greater in the light in 13 of 16 light: dark 

comparisons, and fungal production was significantly greater in the light in 15 of 16 light: dark 

comparisons.  We did not find evidence for widespread proportional increases in response 

variables (autotrophic, heterotrophic, and enzymatic response) corresponding with increasing 

temperature, as only bacterial production, beta-glucosidase, and beta-xylosidase activities 

increased in a near-linear fashion with ascending temperature.  Lastly, we did not find that the 

magnitude of light stimulation was correlated across all response variables.  However, the log 

response ratios of one subgroup of response variables did show significant concordance.  The 

magnitude of light stimulation on bacterial production and the activities of beta-glucosidase, 

leucine aminopeptidase, and phosphate were significantly positively correlated. 

5.1 Heterotrophic Response to Algal Activity  

Because heterotrophic microbes and certain periphytic enzymes are important in the 

degradation of organic matter, we were especially curious about the effects of algal presence at 

different light levels and temperatures.  It was hypothesized that heterotrophic microbes would 

be stimulated by algal activity, with heterotrophic activity being greater in the light treatment 

mesocosms stimulated by algae.  This hypothesis was supported for bacterial and fungal 

production.  Both bacterial and fungal production were significantly greater in light-exposed 

mesocosms; thirteen of 16 light: dark comparisons had higher rates of bacterial production in the 

light than in the dark (Figure 14b), and 15 of 16 light: dark comparisons had higher rates of 

fungal production in the light than in the dark (Figure 14c).  Previous studies have found similar 

results, as bacterial and fungal growth and production in periphytic communities are enhanced in 
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the presence of photosynthesis (Kuehn et al. 2014; Halvorson et al. 2018; Francoeur et al. 2019; 

Neely and Wetzel 1995; Scott et al. 2008).   

The direct effect of algae on heterotrophic microbes has interesting implications on 

energy flow within freshwater ecosystems.  If bacteria and fungi are stimulated to process and 

mineralize detrital organic matter at a greater rate in the presence of light, then this would impact 

ecosystem carbon flow and nutrient cycling.  This scenario would be an example of positive 

“priming,” which is likely due to algal exudates near plant litter “priming” the heterotrophic 

microbes by increasing their ability to process and mineralize the plant litter present (see 

Kuehn et al. 2014; Danger et al. 2013).  However, this phenomenon could also work in the 

opposite direction, inhibiting the processing and mineralization of plant litter. Negative 

“priming” involves the heterotrophic microbes present on plant litter obtaining their labile DOC 

from these algal exudates and in turn decomposing and mineralizing plant litter at a lesser rate, 

because the labile DOC from these exudates would be more readily utilized by the heterotrophic 

microbes present than the labile DOC available from decomposing and mineralizing plant litter 

(Halvorson et al. 2019).  

 Food webs are often used to represent the energy flow across trophic levels in an 

ecological community.  Food webs based upon primary production (green food webs) and food 

webs based upon detritus (brown food webs) are linked via complex interactions involved in 

carbon flow and nutrient cycling (Zou et al. 2016).  Experiments have shown that brown food 

webs respond strongly to the quality and quantity of dead organic matter, which is controlled by 

the structure of the green food web (Harrault et al. 2012; Danger et al. 2012).  Moreover, the C: 

N limitation of decomposers depends on the gap between C: N demand of decomposers and C: N 

of supplied detritus (Bosatta and Berendse 1984; Sterner and Elser 2002; Daufresne et al. 2008).  
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Microbes have favorable elemental stoichiometry relative to detritus and therefore have the 

potential to serve as the primary food resource for detritus-feeding consumers, such as 

invertebrates, which dominate in these systems (Kuehn et al. 2014).  Our finding that 

heterotrophic bacterial and fungal production was greater in the presence of light (increased algal 

activity) is consistent with the previous literature (Kuehn et al. 2014; Halvorson et al. 2018; 

Francoeur et al. 2019; Neely and Wetzel 1995; Scott et al. 2008).  This phenomenon plays a key 

role in the linkage between green and brown food webs, as algal-derived C (green food web) is 

consumed by these decomposers (brown food web) (Kuehn et al. 2014).  Further studies are 

needed to enhance our understanding of the mechanistic relationship between algal 

photosynthesis and heterotrophic response, along with the potential impact of this relationship on 

energy flow and nutrient cycling. 

5.2 Enzymatic Response to Algal Activity  

In contrast to the consistent stimulation of bacterial and fungal production by algal 

photosynthesis, enzymatic responses to the presence of algae were variable.  Leucine 

aminopeptidase (16 of 16 light: dark comparisons, p = 0.001) and phosphatase (11 of 16 light: 

dark comparisons, p = 0.001) activities were significantly greater in the presence of light 

(Figures 14f & g), while beta-glucosidase (2 of 16 light: dark comparisons, p = 0.005) and 

phenol oxidase (4 of 16 light: dark comparisons, p = 0.128) activities were greater in the dark 

mesocosms, with beta-glucosidase being significantly greater (Figures 14d & h).  Beta-

xylosidase activity was split, with response being non-significantly greater in the presence of 

light in 9 of 16 light: dark comparisons (p = 0.777) (Figure 14e).  These findings conflict with 

those of Francoeur et al. (2006), who examined the effects of light on heterotrophic extracellular 

enzyme activities of periphytic/ endogenous microbial assemblages associated with Typha litter 
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in a wetland field study setting.  They found short-term (30 min) light exposure significantly 

increased beta-glucosidase activity, while not stimulating beta-xylosidase and leucine 

aminopeptidase activities, and variably affecting phosphatase activity.  However, the distinction 

between microbial communities in these experiments was significant: we used both light and 

dark-grown communities, while Francoeur et al. (2006) used all light-grown communities, with 

only short-term inhibition of photosynthesis.  Therefore, further testing of naturally occurring 

microbial communities is needed.  Beta-xylosidase and leucine aminopeptidase activities have 

previously been found to be stimulated by algal photosynthesis (Espeland et al. 2001; Francoeur 

and Wetzel 2003; Ylla et al. 2009), however these studies were performed using artificial, inert 

substrata, and so the findings of these studies are not easily extrapolated to communities that 

inhabit naturally decaying plant litter.  All five of the enzyme activities tested were enhanced in 

the presence of light when tested in two streams with contrasting DOC quantity and quality (Rier 

et al. 2014).  However, this differs from our study, as our field-conditioned Typha litter was 

placed in different mesocosms with equivalent nutrient makeups.   

While enzymatic response to the presence of algae was variable, other studies have found 

greater extracellular hydrolytic (beta-glucosidase, beta-xylosidase, leucine aminopeptidase, 

phosphatase) and oxidative (phenol oxidase) enzyme activities in periphytic communities in the 

presence of light (Espeland et al. 2001; Francoeur and Wetzel 2003; Francoeur et al. 2006; Ylla 

et al. 2009; Rier et al. 2014; Rier et al. 2007).  Several mechanisms may explain this pattern.  An 

increase in heterotrophic production in the presence of light suggests an association between 

algal presence and greater enzymatic response.  We found heterotrophic production (bacteria and 

fungi) was greater in the light treatments (Figures 14b & c).  Algal photosynthesis can also shift 

the pH in periphytic microbial communities to optimum levels (from < 7 to > 9) for many 
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periphytic degradative enzymes (Revsbech et al. 1983; Espeland et al. 2001; Francoeur and 

Wetzel 2003).  Additionally, algae provide a greater surface area for colonization by 

heterotrophic microbes (Stock and Ward 1989; Rier and Stevenson 2002).  Lastly, when algae 

produce labile DOC in the form of exudates from photosynthesis (e.g., Kuehn et al. 2014; Wyatt 

et al. 2014) carbon is likely not scarce (Wyatt and Turetsky 2015).  Instead, in habitats where N 

and P may be limiting, heterotrophic microbes may produce more N and P-acquiring degradative 

enzymes.  In these ways, algal presence may alter the physical and chemical environment of 

periphyton in ways that increase enzyme activities.   

Nitrate concentration, which began at ~200 µg/L, decreased significantly throughout the 

experiment (~200–~1,000X).  These conditions contrast with a similar study (Pope et al. 2020), 

where mesocosms were used to manipulate light for field-grown periphyton communities under 

conditions of constant very low N availability (< 13 µg/L).  However, both studies found that 

activities of beta-glucosidase, beta-xylosidase, and phenol oxidase were not generally stimulated 

by light and algal activity.  Instead, we found that both leucine aminopeptidase and phosphatase 

activities were enhanced in the light treatments.  Leucine aminopeptidase and phosphatase are N 

and P-acquiring enzymes, and so it may be that carbon was not limiting in the light due to 

increased labile DOC from algal photosynthesis, but N and/or P were limiting.  Future 

experiments that directly manipulate N concentrations throughout experimentation may aid in 

further understanding, as N limitation could limit heterotrophs’ ability to couple assimilation of 

algal-exuded C with the synthesis of N-costly degradative enzymes (Halvorson et al. 2019b; 

Jabiol et al. 2018). 
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5.3 Effects of Temperature across Response Variables 

It is universally recognized that an acute change of temperature produces a corresponding 

change in metabolic rate, and it is generally observed that this acute effect is ameliorated by 

compensatory processes (Clarke 2006).  Increased temperatures generally lead to greater 

enzymatic activities (Fenoy et al. 2016), stimulating algal (Gu and Wyatt 2016) and 

heterotrophic production rates (Ferreira and Chauvet 2011; Manning et al. 2018).  It has been 

found that microalgae tend to grow optimally within a temperature range of 20 and 30 °C 

(Moejes and Moejes 2016), while most aquatic hyphomycetes (aquatic fungi commonly found 

on decaying plant litter) show maximum growth between 15 and 25 ºC (Suberkropp 1984; 

Sridhar and Bärlocher 1993).  In a similar experiment to ours where the effects of temperature on 

microbes were measured across light and temperature gradients, algal, bacterial, and fungal 

production increased with increasing temperature (15–30 °C), with bacterial production 

increasing most linearly with increasing temperature (Pope et al. 2020).  For this reason, we also 

hypothesized a proportional linear increase in response variable (autotrophic, heterotrophic, and 

enzymatic rates) would be observed with increasing temperature, consistent with the metabolic 

theory of ecology.  This hypothesis was not generally supported.  Total photosynthetic rate 

decreased significantly above 21 °C during day 35 but was greatest at 28 °C during day 77 

(Figure 6), while fungal production was fairly consistent across temperature during day 35 but 

decreased significantly above 7 °C during day 77 (Figure 8).  This was surprising, as algal and 

fungal production have generally been found to be stimulated with increasing temperature 

(Ferreira and Chauvet 2011; Gu and Wyatt 2016; Manning et al. 2018; Pope et al. 2020).  While 

leucine aminopeptidase and phosphatase activities were greatest at 28 °C, leucine 

aminopeptidase activity was lesser at 21 than 14 °C during day 35 and was roughly equivalent 
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between the two temperatures during day 77 (Figure 11) and phosphatase activity was lesser at 

21 °C than 14 °C during day 35 (Figure 12).  Phenol oxidase activity was greatest at 7 and 21 °C, 

and substantially lessened at 14 and 28 °C (Figure 13).   

Only 3 of 8 response variables, including bacterial production (Figure 7), beta-

glucosidase (Figure 9), and beta-xylosidase (Figure 10) activity, increased in a near-linear 

fashion with ascending temperature (also Tables 11a & b).  However, this is consistent with the 

findings of Pope et al. (2020), who also found that these three response variables increased 

linearly with increasing temperature.  While not all response variables increased linearly with 

increasing temperature, in 13 of 16 mesocosms (except for day 77 fungal production and phenol 

oxidase activity at both days), the effect of temperature was higher at 28° than 7 °C, regardless of 

light level.  Additionally, aside from the activity of phenol oxidase, each extracellular 

degradative enzyme activity was greatest at 28 °C, regardless of whether the effect of 

temperature increased in a linear fashion between each temperature point, which confirms the 

findings of previous research that extracellular degradative enzymatic activity increases with 

temperature (Fenoy et al. 2016; Pope et al. 2020).  Overall, we did find evidence that higher 

temperatures broadly increased microbial production and enzymatic activity rates, as posited by 

the metabolic theory of ecology.  The differences in algal, bacterial, and fungal production across 

temperature are worth further inquiry, as this may have been the result of different thermal 

optima for the microbial groups under investigation.   

  There is evidence that algae stimulate heterotrophic microbes (bacteria and fungi) in the 

presence of light (Kuehn et al. 2014; Wyatt and Turetsky 2015), likely due to the “priming 

effect”, which can alter decomposition of submerged associated plant litter (Danger et al. 2013; 

Halvorson et al. 2016, 2019).  However, less attention has been paid to whether this stimulation 
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varies across temperature gradients, which could have interesting implications on freshwater 

microbial communities as climate change continues.  It is likely that temperature and light 

interactively mediate algal and heterotrophic activity, because both factors constrain algal 

photosynthetic activity, and heterotrophic maximal growth is dependent upon temperature.  This 

could affect autotroph: heterotroph interactions, as bacterial and fungal ability to assimilate algal 

exudates for faster growth is temperature-dependent (Gu and Wyatt 2016).   

5.4 Response to Algal Stimulation across Temperature 

We questioned whether the strength of the heterotrophic microbial responses to algal 

activity would vary with respect to temperature.  While bacterial production did increase nearly 

linearly as temperature increased (Figure 7) and was found to be greater in the presence of light 

(Figure 14b), the strength of bacterial production response to algal activity did not vary with 

respect to temperature (light x temperature, p = 0.515).  This conflicts with the results of Pope et 

al. (2020), who found a significant interaction between light and temperature for bacterial 

production, with the strongest light stimulation occurring at their lowest temperature (15 °C).  

However, given greater enzyme kinetics at higher temperatures (see Brown et al. 2004; Fenoy et 

al. 2016), they hypothesized that light stimulation would increase with increasing temperature.  

The strength of fungal production response to algal activity also did not vary with respect to 

temperature (p = 0.019, not statistically significant following Bonferoni-Holm correction).  

Fungal production was found to be greater in the presence of light (Figure 14c), but the effect of 

temperature was extremely variable between days (Table 5a), with light stimulation strongest at 

14 and 21 °C during day 35 and 7 °C during day 77 (Figure 8).  This conflicted with previous 

research (Ferreira and Chauvet 2011; Manning et al. 2018; Pope et al. 2020) which found that 

fungal production increased with temperature, although Ferreira and Chauvet (2011) used a 
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smaller temperature gradient (between 5 and 15 °C).  Pope et al. (2020) found a significant 

interaction between light and temperature for fungal production.  However, they found that light 

stimulation of fungal production was greatest at 25 °C, while our results were mixed.  

Methodological differences between our study and that of Pope et al. (2020) might have 

contributed to these divergent results; in particular, while our Typha litter incubated within 

different temperature mesocosms for 35 and 77 days before production was measured, Pope et al. 

(2020) incubated Typha litter in the field (~ 27 °C), and then used this material for short-term 

experimental exposures at other temperatures.  Therefore, our microbial communities may have 

been more acclimated to the temperatures where their production was measured than those of 

Pope et al. (2020).  With conflicting results, the potential light and temperature interaction on 

heterotrophic production requires further inquiry.  Although environmental factors that 

determine algal production in periphyton have been found to subsequently affect heterotrophic 

activity (Wyatt and Turetsky 2015; Halvorson et al. 2016; Gu and Wyatt 2016), the potential for 

light and temperature to interactively affect heterotrophic activity during organic matter 

decomposition is not fully understood. 

 We also questioned whether the strength of the heterotrophic extracellular degradative 

enzyme responses to algal activity would vary with respect to temperature.  Leucine 

aminopeptidase (light x temperature, p = 0.006), phosphatase (light x temperature, p = 0.001), 

and phenol oxidase (light x temperature, p = 0.011) activity responses to algal activity all varied 

with respect to temperature, while beta-glucosidase (light x temperature, p = 0.095) and beta-

xylosidase (light x temperature, p = 0.108) did not (Tables 6a–10a).  Both leucine 

aminopeptidase and phosphatase activities were stimulated most strongly by light at 14 and      

28 °C.  Phenol oxidase activity followed no easily interpretable trends, and unlike leucine 
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aminopeptidase and phosphatase (Figures 14f & g), phenol oxidase activity tended to be 

somewhat (but non-significantly) greater under dark conditions (Figure 14h) and therefore might 

have a tendency to be inhibited by algal activity.  Our results were consistent with the findings of 

Pope et al. (2020), who found that beta-glucosidase and beta-xylosidase activity responses to 

algal activity did not vary with respect to temperature.  Also similar to our results was their 

findings that beta-glucosidase, beta-xylosidase, and phenol oxidase activities were generally not 

greater in the presence of light.  They did not incorporate leucine aminopeptidase or phosphatase 

activities into their study however, and therefore our finding that these enzymatic activities 

varied in their response to algal activity at different temperatures appears to be novel.  Empirical 

evidence exists for greater extracellular hydrolytic and oxidative enzyme activities in periphytic 

communities in the presence of light (Espeland et al. 2001; Francoeur and Wetzel 2003; 

Francoeur et al. 2006; Ylla et al. 2009; Rier et al. 2014), and generally these activities are greater 

at increased temperatures (Fenoy et al. 2016).  However, we provide evidence that light and 

temperature can interactively affect heterotrophic extracellular enzymatic activity.  This has 

interesting implications that should be further explored, as greater enzymatic activity is the likely 

mechanism for enhanced decomposition by heterotrophic microbes of submerged plant litter 

(Romani et al. 2006; Kuzyakov 2010).   

5.5 Correlation of the Magnitude of Light Stimulation  

Finally, it was hypothesized that if heterotrophic responses to photosynthesis were 

controlled by the same mechanism(s), then the magnitude of stimulation by the light treatment 

would be positively correlated across response variables.  Log response ratios of PAR/Dark and 

PAR + UV/Dark were significantly positively correlated, and so pairwise comparisons between 

log response ratios were made using the PAR + UV light level, only because it allowed for the 
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passage of UV light (~200–400 nm) as well as PAR light (400–700 nm).  This hypothesis was 

not supported, as nearly all pairwise comparisons between log response ratio values (PAR + UV 

light-dark) were not significantly positively correlated (Table 13).  However, the log response 

ratio values of one subgroup of response variables did show significant concordance.  The 

general trend that emerged was that the magnitude of light stimulation of bacterial production 

and the activities of beta-glucosidase, leucine aminopeptidase, and phosphatase were 

significantly positively correlated.  Additionally, this stimulation of bacterial production was 

nearly significantly positively correlated (p > 0.20) with the magnitude of light stimulation on 

beta-xylosidase and phenol oxidase activities.  This positive correlation suggests that either the 

same mechanism drove increased bacterial production and increased enzymatic activity in the 

light, or that enzymatic responses to light were the consequence of increased bacterial 

production.  With greater quantities of labile DOC likely available in the light treatments from 

algal photosynthetic exudates, higher N and P-acquiring enzymatic activities could correspond to 

N and/or P limitation in these mesocosms (Wyatt and Turetsky 2015), although such an 

explanation is not consistent with a light-induced increase in C-acquiring beta-glucosidase 

activity.  The magnitude of light stimulation on fungal production, though, did not positively 

correlate with the magnitude of light stimulation of any enzymatic activities.  This finding 

suggests that the mechanism that drives fungal production in the presence of light may not be the 

same as the mechanism driving bacterial production or enzymatic activities.  Alternatively, 

fungal production in the light could also be driven by an increase in labile DOC available 

through algal photosynthetic exudates, but if fungi were not as N and/or P limited as bacteria, 

then they would not need to produce as many N and P-acquiring extracellular enzymes as 

bacteria to acquire resources.  The magnitude of light stimulation of total photosynthetic rate did 
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not correlate with the magnitude of light stimulation of any enzyme activity, although it was 

nearly significantly positively correlated with beta-xylosidase activity (p > 0.10).  Although 

algae produce some extracellular enzymes in great quantities, including phosphatase (Chróst and 

Overbeck 1987; Münster 1994; Wetzel 2001), most extracellular enzymatic activity in aquatic 

environments is associated with heterotrophic activity (Romani 2010), and so this lack of 

concordance is not surprising.  A lack of concordance between the magnitude of light stimulation 

on algal, bacterial, and fungal productions appears temperature dependent.  Total photosynthetic 

rate was generally greatest at 14 and 21 °C, while bacterial production was greatest at 28 °C and 

fungal production was variable, but greatest at 7 °C during day 77 (Figures 6–8).  Therefore, 

different thermal optima for algal, bacterial, and fungal production may have complicated the 

relationships of light-induced stimulation on these response variables, preventing simple positive 

correlations. 

The temporal resolution of our study was limited, as we only employed two sampling 

dates.  Further testing of this nature should be done with more sampling dates.  Fungi are far 

more important in the decomposition of submerged plant litter than bacteria (Kuehn 2016).  

However, fungi tend to dominate early decomposition, gradually giving way to bacteria as decay 

advances (Webster and Benfield 1986).  This was demonstrated by Suberkropp (1995) who 

found fungal production decreased significantly after day 10 in three stream habitats.  In this 

experiment, data was collected 35 and 77 days, respectively, after initial colonization of Typha 

litter within the mesocosms began.  It would be interesting to see whether the magnitude of light 

stimulation on fungal production is closely associated with the magnitude of light stimulation of 

the activities of any extracellular enzymes when fungal production, and therefore associated litter 

decomposition, is greatest. 
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5.6 Conclusions 

In summary, this study showed clear evidence that temperature and light level have 

strong effects on freshwater microbial communities.  Temperature was a significant factor for all 

8 of our response variables (Tables 3–10 (a only)).  Bacterial production, beta-glucosidase and 

beta-xylosidase activities scaled in a near-linear fashion as temperature increased (Tables 11a & 

b), and generally speaking, average production and activity measurements increased (up to a 

point) as temperature increased.  Light significantly affected 6 of 8 response variables (Tables 3–

10 (a only)).  Both bacterial production and fungal production were significantly greater in light 

conditions compared to dark (Figures 14b & c), which is consistent with previous findings in 

periphyton communities (Kuehn et al. 2014; Halvorson et al. 2018; Francoeur et al. 2019; Neely 

and Wetzel 1995; Scott et al. 2008), and has interesting implications for ecosystem carbon flow 

and nutrient cycling.  The activities of leucine aminopeptidase and phosphatase were also found 

to be greater in the presence of light (Figures 14f & g), which adds to evidence from previous 

studies that light availability has the potential to stimulate extracellular enzymatic activity 

(Espeland et al. 2001; Francoeur and Wetzel 2003; Francoeur et al. 2006; Ylla et al. 2009; Rier et 

al. 2014) and potentially suggests algal presence may further affect heterotrophic activity by 

stimulating N and P-acquiring degradative enzymes in periphyton communities.  The responses 

of bacterial and fungal production to algal activity did not vary with respect to temperature, 

although fungal production-responses did show a non-significant pattern to a light and 

temperature interaction, with light stimulation strongest at 14 and 21 °C during day 35 and 7 °C 

during day 77 (Figures 7 & 8).  Pope et al. (2020) found that responses of both bacterial and 

fungal production to algal activity varied with respect to temperature, although they did not find 

that light stimulation generally increased with increasing temperature as they hypothesized.  

With conflicting results, the potential light and temperature interaction on heterotrophic 
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production requires further inquiry, as the potential for light and temperature to interactively 

affect heterotrophic activity during organic matter decomposition is not well understood.  The 

responses of leucine aminopeptidase, phosphatase, and phenol oxidase activities to algal activity 

varied with respect to temperature, indicating a synergistic effect of light and temperature on 

heterotrophic extracellular enzymatic response (Figures 11–13).  Both leucine aminopeptidase 

and phosphatase activities were stimulated most strongly by light at 14 and 28 °C.  Phenol 

oxidase activity followed no easily interpretable trends, and unlike leucine aminopeptidase and 

phosphatase (Figures 14f & g), phenol oxidase activity was somewhat (although non-

significantly) greater under dark conditions (Figure 14h) and therefore might tend towards 

inhibition by algal activity.  This has interesting implications that should be further explored, as 

greater enzymatic activity is the likely mechanism for enhanced decomposition of submerged 

plant litter by heterotrophic microbes (Romani et al. 2006; Kuzyakov 2010).  The magnitude of 

light stimulation on bacterial production and the magnitude of light stimulation on extracellular 

enzymatic responses were positively correlated, which suggests that they may be driven by the 

same mechanism when light was present.  However, the magnitude of light stimulation on fungal 

production was not positively correlated with the magnitude of light stimulation of any 

enzymatic activities.  Further testing with more sampling dates should be done in order to 

determine if these responses in the light may be positively correlated earlier after initial 

microbial colonization of associated litter, as fungal production has been found to decrease 

significantly early on after initial decomposition, gradually giving way to bacteria as decay 

advances (Suberkropp 1995; Webster and Benfield 1986). 

 Overall, this study extends our understanding on periphytic microbial interactions and 

provides what we believe to be novel information on the synergistic effect of temperature and 
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light on microbial communities.  However, temporal variation between the sampling days of 

response variables made discerning potential trends in our data very difficult, and so future 

research should include more sampling dates to address this problem.  Given the importance of 

freshwater microbial interactions on ecosystem carbon flow and nutrient cycling, more research 

is required in order to further understand the roles of abiotic factors on these interactions, namely 

light and temperature.   
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Appendix: Supplementary Results 

Weekly Mean Temperatures 

 

Appendix Figure 1. Mesocosm water temperatures (°C) measured throughout experimentation.  

Each value represents a weekly mean temperature, while error bars represent the standard 

deviation within these mean temperatures, as measurements were taken every 30 minutes 

throughout experimentation. 

Water Measurements 

Appendix Table 1. Physico-chemical conditions in the experimental mesocosms.  Values 

represent mean measurements ± 1 standard deviation. 

 

Mesocosm Light Transmittance 

Appendix Table 2. Percent of PAR transmittance of the plexiglass coverings on each 

mesocosm.   

 


