1904

Normal College News, November 26, 1904

Eastern Michigan University

Follow this and additional works at: http://commons.emich.edu/student_news

Recommended Citation

http://commons.emich.edu/student_news/53

This Article is brought to you for free and open access by the University Archives at DigitalCommons@EMU. It has been accepted for inclusion in EMU Student Newspaper by an authorized administrator of DigitalCommons@EMU. For more information, please contact lib-ir@emich.edu.
Contents:

Patrick H. Kelley .. Page 133

Geography Work in the Grades,
Committee of State Teachers' Association Page 135

The Teaching of Arithmetic,
By J. C. Stone .. Page 148

Literature in the Grades,
By Estelle Downing .. Page 150

"The Fourth Story",
By R. C. Ford ... Page 152

Loan and Scholarship Association Page 154

The Library,
By G. M. Walton .. Page 155

The Week in Brief ... Page 156

Portraits Suitable for Framing,
By E. A. Strong ... Page 157

Saturday, November 26th, 1904
PRICE FIVE CENTS
A Few of the Good Things which will appear in the Normal College News in 1904-5

The Development of School Legislation
By PRESIDENT L. H. JONES.

The Seven Champions of Christendom
By PROFESSOR JULIA ANN KING.
Excellent material for history stories, and suggestive supplementary work.

Michigan History Sketches
By PROFESSOR R. C. FORD and others
A series of delightful articles on the history of the Great Lake region and the early mission days. Just what Michigan teachers have been looking for.

What Classics Shall be Read
By PROFESSOR F. A. BARBOUR and MISS ABIGAIL PEARCE
An exhaustive and critical report on suitable literature for every class from the primary through the High School. This is especially designed to meet the need of those teachers who are in doubt as to just what their pupils should read.

Legend of Arthur and his Knights
By DR. ALMA BLOUNT
Dr. Blount is devoting the present year to Arthurian research work in Europe.

Arithmetic in the Grades
By PROFESSOR J. C. STONE.
Joint author of the new Southwork-Stone Arithmetics.

The World's Great Educators
A Series by PROFESSOR C. O. HOYT

Sketches on the History of Geometry and Arithmetic
By PROFESSOR E. A. LYMAN

Nature Study Helps
A Series of articles describing the work in the grades of the Training Department to aid those who are not specialists in this kind of work.

Exploration work in Geography and Geology, On Physical Education, Professional Ethics, School Supervision, Model Lessons, Suggestive Programs for School exercises.

The above is but a partial list of the articles which are being prepared for publication in the News this year. A more complete list and prospectus of the work to be covered will be issued in the near future.
Detroit
University
EDUCATES
young men and women for useful life and profitable employment. Can enter any day and take one or more branches or complete course. Has had more
students in attendance—37,000—and furnished more situations to graduates than all the other business colleges in Detroit and Michigan. Now, an
excellent time to commence. Call or send for handsome catalogue.

WILLIAM F. JEWELL, President
PLATT R. SPENCER, Secretary.
BUSINESS UNIVERSITY BUILDING, 11-13-15-17-19 Wilcox Avenue, DETROIT, MICHIGAN

The Albert Teachers' Agency,
C. J. ALBERT, Manager,
378 WABASH AVE., CHICAGO.
Twentieth year. Teachers wanted for all kinds of positions, especially for Grade Work and Science in High Schools. Year Book free.

MICHIGAN
Business College

THOROUGH PROGRESSIVE PRACTICAL
The proprietors of this school are all teachers, and pupils will be under their direct supervision. Call or write for catalogue.

J. C. WALKER, President W. S. OSBORN, Vice-President
G. B. WITBEE, Secretary
42-44-46-48-50 GRAND RIVER AVENUE, DETROIT, MICHIGAN

For Teachers Everywhere

The Normal College News is published every Saturday during the college year. The
first three numbers of every month deal largely with college affairs, while the fourth number of
every month is devoted to the interests of teachers everywhere regardless of school affiliations.
Nearly all the work and the articles printed are given gratis with the object of supplying the teachers
of Michigan with helpful pedagogical reading at about the actual cost of publication.

Cut out this blank and send it with fifty cents to the Normal College News, Ypsi-
lanti, Michigan. You will get no ready-made teaching devices that never work, but good,
helpful reading, that will furnish you many suggestions in accord with sound pedagogical principles.

Name ___ 1904

P. O. __ County,

State __
Normal Conservatory of Music
FREDERIC H. PEASE, DIRECTOR

FACULTY

PIANO
Miss Belle Beardsley
Mrs. Jessie Pease
Miss Ruth Putnam
Miss Clara Brabb

VIOLIN
Miss Abba Owen

VOICE CULTURE AND SINGING
Mrs. Annis Gray
Miss Caroline Towner
Mr. and Mrs. Frederic Pease

ORGAN
Mr. Clair J. Winton
Mr. York
Mr. Frederic Pease

VIOLONCELLO
Mr. H. W. Samson

ITALIAN
Signore Pimienta

For circulars concerning terms and tuition apply to ISABELLA GAREISSEN, Secretary.
Michigan State Normal College

Founded in 1851. Best equipment of any institution for the training of teachers in the West.

Admits H. S. graduates to a two years’ Life Certificate Course.

Gives degree of B. Pd. for a three years’ course for H. S. graduates.

Gives review courses for persons wishing to prepare for county and state examinations.

Expenses are quite moderate. Rooms 75c. to $1.00 to each student per week. Table board $2.00 to $3.00 per week. Tuition $3.00 per term of twelve weeks.

Summer term of six weeks.

Send for year book,

L. H. JONES, President.
Chemical AND Physical Apparatus
Instruments and Supplies

Chemicals,
Reagents
and Stains

In fact everything to equip
Science
Laboratories

Can be obtained of
best quality and at
reasonable prices from

Eberbach
& Son,
Manufacturers, Importers,
Ann Arbor, Michigan

Our complete catalogue will be mailed to science teachers
upon request.
Patrick H. Kelley, the newly elected Superintendent of Public Instruction, comes to the office with a wide and varied experience in the public schools of Michigan.

Born in Cass County, October 7, 1867, he early removed with his parents to Van Buren County where his education began in the district school. Later he attended the village school at Watervliet, and afterward the Northern Indiana Normal School where he graduated in 1886. The years '90-'91 and '91-'92 he spent at the State Normal College, at Ypsilanti, receiving a life certificate from the State Board of Education. In 1900 he graduated from the law department of the University of Michigan. Thus as a student he has come in contact with every step of the educational system of the state. His work as a teacher was so interwoven with his career as a student that he had unusual opportunity not only to know but to appreciate the needs of the schools. For two years he was principal of schools at Fair Plain, six years at Galien, one year at Hartford, and for five years Superintendent of Schools, at Mt. Pleasant, Michigan. Since graduating from the University in 1900 he has devoted himself to the interests of a leading insurance company and to the practice of law.

In April 1901, Mr. Kelley was appointed a member of the State Board of Education to fill the vacancy caused by the resignation of E. F. Johnson. He was elected to the same position by a majority of 75,000 in 1902 and since then has been president of the board. Last spring in the Republican state convention he was nominated for Superintendent of Public Instruction by acclamation and in the recent election received a majority of more than 100,000.

Mr. Kelley is a vigorous speaker and has taken part in the last three presidential campaigns. In the recent campaign he spoke daily for seven weeks and accompanied Governor-elect Warner on a tour of the state in the last week, making over sixty speeches in four days.

During his four years as a member of the State Board of Education, Mr. Kelley has been closely associated with Professor Delos Fall, the present State Superintendent, and he states that it is his intention to carry forward the unfinished work of the present administration without a break.

He has an unbounded faith in the public school as an instrument for development of character, and the making of good citizens. He worked his own way through the public schools and paid his Normal and University expenses out of savings from teaching, and believes that it is possible at the present time for any boy of ordinary gumption to obtain a college education, and questions whether the wealthy boy, because of his attitude of mind, does not experience more real difficulty in getting through college than the boy of limited means.

Mr. Kelley's experience as a student and teacher, as a superintendent of schools and institute conductor and as a member of the State Board of Education coupled with his legal training give him a splendid equipment for serving the state in the office to which he has been elected, and the News believes that our great public school system will enjoy prosperity and develop during Mr. Kelley's administration. He has been a remarkably efficient member of the State Board of Education and a loyal supporter of the Normal College and the normal schools of the state, and friends and alumni of the Normal are looking forward to a great growth in the institution while he is so closely connected with it.

Mr. Kelley takes great pleasure in his home life and is devoted to his wife and to his three children, Lena Vee, age thirteen years, Philip Henry, age three years and Katherine, age seven months. His residence and business will remain in Detroit.
Preliminary Report of a Committee of the State Teachers' Association on an Outline of Geography Work for the Grades.

The committee is enabled to circulate this report by the courtesy of the Normal College News and earnestly solicits comments, especially objections, from any reader on the report as a whole or any detail in it. The committee will be grateful to any teachers or readers who will state that they dislike or wonder at anything in the report, with or without the reasons. Such comments of statements, mailed at once to H. M. Slanson, Ann Arbor, will help in making the final report to be placed before the Association Meeting in December for discussion.

Martha A. Sherwood
H. M. Slanson
O. G. Frederick
Mark S. W. Jefferson

IV.

The following is the order of study recommended:

1—Home Geography, below the fourth grade and preceding the use of any text book.

2—The Earth as a whole. Important material is the cheap globe, one to every few pupils.

3—Prominent physical features of each continent, with brief study of regional geography.

Note—So much (1, 2 and 3) may perhaps be accomplished by the middle of the fifth grade.

4—The few important countries studied intensively, a few others briefly touched from the standpoint of their main interest for the rest of the world, which may well be at times the course of current events.

V.

The thorough study of a country regarded as important should bring the children vivid ideas of what that country is and stands for in the world's progress, ethically, socially, industrially and commercially; what her landscapes, her people, her cities and villages; how she lives, what her institutions, and the influence they have had on the world's work, and especially their influence upon and relation to the progress of our own country. If the location of fewer cities, mountains and rivers should be taught than has been usual, they should be taught very thoroughly.

A few countries—and these the countries of most importance—made real in landscape and institutions—this is the committee's ideal of geographic attainment in the grades.
PRIMARY GEOGRAPHY.

Third and Fourth Grade.

To convey clear notions of distant lands, their peoples, and how they live, we must say things about the forms of the land and water there and the climate. These descriptions will be if you like, physiographic, astronomic, and meteorologic. The name, however, does not matter. The essential beginning therefore would seem to be to have the child observe what simple astronomic, meteorologic and physiographic facts are within his range that conceptions of the remote conditions may be possible to him. Call it Nature Study, call it Home Geography, or call it Observation work; the caution to be observed is, that it must not degenerate into a language lesson alone, though the material gained by observation readily lends itself to that exercise.

These simple observations are recommended for Primary Geography from the direct bearing they have on the plant and animal inhabitants of the earth, and with these inhabitants text book Geography is largely concerned.

Astronomic Observations.

Continued observations throughout the year by means of a daily calendar on the blackboard. Individual observations should be made and discussed by all before recording. The following points are suggested:

- **The Sun**—Time of rising and setting for length of day, approximate place of same, height at noon for inclination of rays. One or two good observations of the sun each month suffice and will be more interesting than daily observations. A good plan is to make observations on several successive days each month.

- **The Moon**—New moon, first quarter, half and full moon, with place of each in the sky at sunset. There is much haziness of knowledge with reference to the moon and its phases. What is needed is observation by the children in the evening followed by discussion and record the next day often enough to make the facts familiar. At present the facts are too commonly neglected and, when, in astronomy classes, the explanation is attempted, the facts being strange, the explanation is found "difficult," whereas if the facts become familiar no explanation need be offered. It will come to children of itself.

- **Stars and Planets**—Record the evening star each month. Get children to learn two or three constellations, say the Big Dipper, Little Dipper and Orion and to observe their positions in the sky at the same time on several days in each month while they are visible. Locate the North star.

Meteorologic Observations, in the Same Daily Calendar.

Sunshine and Cloudiness.

Rain, Snow, Frost and Dew.

Wind, direction and force in terms Calm, Light, Strong and Violent.

Temperature—Without thermometer, in terms. Hot, Warm, Cool and Cold, observation made out-of-doors at time of coming to school. The value of this sort of observation is that it calls for an act of judgment that is quite within a child's powers, while in directness of attention to the weather it is superior to any thermometer reading. Good thermometers are expensive and require considerable skill in placing and reading. They are not suitable for young children or untrained teachers.

State of Streams, Swamps and Lakes—As, High or Low, Full of water, or Nearly Dry. If there be taught about solids, liquids and gases, their children pass examples on their way to school. This is valuable to associate with the weather record. A swamp is excellent for this purpose, since it may be possible in dry weather to go all over one that ordinarily is quite impassable, and the swamp plants and animals are peculiar the world over. The teacher should contribute no facts, but guide the children to observe them.

Discussion and occasional reviews of these calendars will help the children to gain actual conceptions in fundamental matters that will serve later as a basis for the study of seasons and climates.

Evaporation and Condensation of Moisture.

At the beginning of this work something must be taught about solids, liquids and gases, their differences and some of their properties. Such work is good winter Nature Study for the third grade.

Evaporation—Show by various experiments that water is changed into vapor on exposure to the air. Expose some definite quantity of water, as a pint, to evaporate under various conditions of heat, light and exposure to wind. Note the different amounts evaporated under these different conditions in the same time not exactly, but relatively. Let the children have many experiences of these things. It is not proposed to explain evaporation. That may as well be recognized as a difficult if not impossible task. But the children are to learn by experiment some of the associations between evaporation and its conditions. Point out the sources of vapor, as oceans, smaller water bodies and the wet ground. Teach that water vapor is the invisible form of water, present under the clearest sky.
Condensation—The school room experiments that show condensation most readily and clearly are to be avoided for pedagogical reasons. For they suggest in nature precisely those processes that are not the great general causes of rain, though they doubtless contribute at times. A teacher who cools the vapor rising from some warm water with a bit of cold glass and goes on to speak of cold mountain tops that extract the moisture from the damp winds that blow over them in the same way, should note that she can only perform her experiment for a little while, so long as the glass remains cold. Presently it becomes warmed by the vapor and she must cool it again to continue the process. That the mountain tops are still cold is proof enough that this familiar explanation is inadequate.

The Physical Explanation of Rainfall.
That ascending air must expand as it rises to points where there is less air above it, and must become cooler because of this expansion is not easy to illustrate. If it is thought worth while it may be stated without explanation. Its demonstration it too difficult for elementary schools.

Physiographic Observations.
Land forms and Agencies that shape them, as seen in exploration and simple diagram mapping of the locality about the school. As many teachers may find this work unfamiliar, detailed suggestions follow the outline.

Land Forms:
Deltas (alluvial Cones)
Flood Plains (Terraces)
Valley (gully, gorge and canyon)
Divide (slopes and hills, leading to mountains and plateaus)

These essential elements of the Earth's surface are seen to be solid forms, the elevation of one part with relation to another being more significant than their outlines. In this they differ from the features of old time geography—cape, island, continent, isthmus and peninsula, which are essentially outlines regardless of relief and are merely geographic terms, not in any sense objects of study. They should be introduced as wanted in experience and then used, their definition being unimportant.

Water Forms:
Rivers and Brooks.
Work of streams, washing and depositing.
Rapids and Falls.
Seasonal variations.

These seem essential objects of observation. Terms such as mouth, source, (usually unimportant), tributary and system should be introduced and used as needed. Here again definition is of no importance for teaching.

Standing Water.
Swamps and lakes will be associated in experience with deltas, flood plains and rivers, in future teaching with salt lakes and oceans.

Suggestions.
This work is to have a two-fold aspect, like the work that is variously called wood-work—when the immediate occupation of attention is in mind; or manual training, when we think rather of the educative effects of this occupation on the mind. The immediate occupation is to be mapping the home district. The educative effect is to be preparation for geographic study in two ways at once:

1) by acquainting the pupil with certain elementary land forms through the direct action of his own senses and so preparing for his acquaintance with distant forms, proceeding scientifically from the known to the unknown, and
2) by familiarizing the child from the start with expression through the map, the most effective means of expression geography has.

Concretely it is mapping the home district that we propose. Pedagogically, however, it is observational geography. Attention is to be directed to a series of land forms that are widely accessible and graded from simple to complex, while accompanying processes will be made the most of.

It is to be done before the fourth grade, which is understood to mean at present that there is best opportunity for it in the third. Later it is thought that if found useful it may work down into earlier years.

It would be out-of-door work carried on in the neighborhood of the school house during the fall and spring. The distances thought of are all less than a mile from side to side, i.e. a half mile for greatest distance from the school. These distances will increase from a few hundred feet to the maximum mentioned as the work goes on, so that there should be no possibility of fatigue arising from the distance walked.

The fullest realization of the opportunities will be found in the country. In a few large cities there may be schools that have little opportunity in this line. In Michigan, however, it is thought that only Detroit could have such school houses, and even there opportunities doubtless exist in the outer districts.

The amount of out-of-door work thought of is about 15 excursions per year, each occupying from 15 to 30 minutes. The weather must determine their exact number and distribution, but it may be supposed that 6 will be possible in the fall and 6 in the spring. The varying time is thought of in connection with the varying distances already spoken of, and to make it possible to meet varying weather and other conditions. It is by no means certain that it is unwise to think of winter trips
under favorable conditions, but they cannot be so safely counted on as the trips in open weather, nor will they offer so great a variety of things to study. These trips are thought of as coming one a week.

It is desired to give the most specific direction possible to teachers wishing to undertake the work, but it is realized that it will at first appear as if the surroundings of each school were so different from those of other schools that there could be no uniformity of practice. Here we come to the fact that teachers are generally able to do the work, but do not today know how. In short, the teacher does not habitually recognize these land forms, is not acquainted with the square mile in which the school house stands, nor has she perhaps ever made a map. In passing we may ask, is it not self evident that this should not be so if we are to study the world with maps and use our "environment" as a starting point?

The concrete side—Mapping the school neighborhood. First the ground is to be looked over for the work. If the streets around the school house are laid out in an exact square mile, it is only necessary to divide this into 15 parts that are not equal; but the first consisting of a very small area, as one block's length of street with the beginnings of the cross streets at the end and increasing slowly at first and then more rapidly. Nothing depends on finishing the exact amount of area laid out. The laying out is to give definiteness to your plans, to make progress visible on the concrete side of the work. If half a mile is all you have time for, it may well be no whitt inferior in opportunity to the mile attacked. A mile going and coming is talked of simply because it is thought that points more remote than a half mile from the school house cannot be visited in the time allowed for the work. If you can find what you want nearer, then so much the better. This laying out will be improved the second time it is done. The nature of the ground will be of importance. It will rarely be the case that the things it is desired to see, from the pedagogical point of view to be spoken of presently, will be equidistant from the school house, so it will presently come about that the area visited is not square but irregular.

The lesson needs preparation on the teacher's part like any lesson. The teacher must go over the ground before taking the class. The first task is to get the class to see that lines on paper may symbolize streets out-of-doors. The map of the square or two to be visited is prepared by the teacher in copies enough for each child to have one, with some simple detail omitted. As the class goes out along the street the representation by the sketch is pointed out to them and presently an opportunity is given them to add the omitted detail, which should be extremely easy to do. Only street lines, straight lines drawn in black, are needed for this lesson and some of the first that follow. Next an attempt is made to add something of the street or streets that adjoin. It will be very simple for the child to add to lines that are drawn on his paper other similar lines. Some proportion is needed from the very first, scale is not. Scale may appear some time but may as well grow up during the whole year. It will be well to recognize that the map when finished need not be accurate, but it must come to mean something to the child. This significance of the map as Geography's means of expression is one of our most important objects. By proportion I mean that long blocks and short blocks, equal and unequal blocks are to be recognized as such, but there is no harm in some ruggedness of proportion. It is not necessary that all should do their work on approximately the same scale. The teacher will of course provide herself with the best maps of the neighborhood obtainable. If there is none printed the town clerk, the mayor, the assessor, or the local surveyor will be able to help her. There will be much advantage for her in making her own map to a suitable scale and as exactly as she can. If some child's house is passed, put it in, also in black, and as the lessons proceed, other buildings, enough for interest. Presently some water will be passed, or if need be, go out after a rain and find it running beside the road. Put it in with a blue pencil. Presently a little cliff, a bluff or some strong slope will be come upon. Put this in too, in brown with little parallel lines across the direction or trend of the bluff, thus:

![Diagram](image_url)

Gentle slopes need not be noticed at first, the height of bluffs will be indicated by the length and strength of the short lines. By making each little line wedge-shaped toward the higher land the sketch is easier to read. This the teacher will do without telling the class to do so, unless it is some day found difficult to tell which is the top and which the bottom of the slope. By the use of these three colors, with solid blue for water, parallel blue lines for swamps, and perhaps blue dots for moist ground, a very complete account of the surface can be given with ease. All roads, houses, fences and in general the works of men are represented in black. Cultivated fields, if de-
sired, may be indicated in green parallel rulings, grass land by dotting in green, and woods by little green circles to symbolize the trees; colored crayons are now obtainable in cheap sets. No better review can be had than a walk through the region last mapped with well made maps prepared by the teacher in hand. The oftener the day's work can begin in this way and the new work added to a good representation of what has been attempted before, the better.

On the concrete side then it is hoped that the year will enable the pupil to make a sketch map of the part of the region about the school that is easily reached in a recitation period and thereby to be ready to read other maps of more extensive regions, but the part of the work so far described is only the husk or external part. There are certain land forms that will easily be found in these trips that are elements that enter widely into the world's landscapes. The more elementary of these are to be included in an incidental sort of way after the first lesson, the place being selected because it offers this opportunity. It should not obtrude itself until you are ready to use the brown crayon for strong slopes. When you come to it, you represent it as part of the area, but pay some attention to its place and its relation to other things about. But this is the

II.—Pedagogical side.

The Land Forms to be Studied:

1. Gravel cones and deltas
2. Flood plains
3. Valley forms
4. Divides, slopes and hills,

all of which are in some way related to streams of water; are present in most maps in greater or less development, and are probably all to be found within a mile of most country schools. To recognize these forms and see their relation to the streams is to make an excellent preparation for wide conceptions of the earth's surface.

Gravel Cones—These are the deposits variously known as detrital cones, alluvial cones or alluvial fans. For use with children the name gravel cones has some advantages. Any gully that mouths on a steep bank is apt to have these fans at its mouth. An excellent imitation of its construction may be made after they have been looked at out-of-doors in this way. A deep triangular notch is cut out of one side of a paper box, V shaped and reaching almost to the bottom of the box. Covering this notch with a card, fill the box with fine, dry sand. The weight of the sand will hold the card in place. Now place the box on the table, withdraw the card and the sand will run out of its weight, leaving a gully behind it and building a cone of sand in front of the box on the table on which it stands. It will be only half a cone of course, as the box will cut out the other half. If it is desired to reproduce the whole, it is readily done by letting some sand run through a paper funnel upon the table. The gravel cones found out-of-doors are commonly less perfect in form but they are distinctly conical, being built by gravel issuing from the gully mouth and running off with rain water in every direction. When the bank is steep and the material composing it of various sizes, the coarser pebbles always gather at the top, as the water sooner tires of carrying them on account of their size. They occur on a small scale on roads where rain water, escaping from a rut, runs across toward the ditch at the roadside. They occur in roadside gutters after a rain, or they may be looked for in ploughed land. It is not likely that there is a school out of Detroit that has not access to at least one example; often they are at hand in great numbers. The gravel cones should be mapped by brown lines at the gully mouth and thence diverging and thinning. Steepness will be indicated, as usual, by heaviness and length of line. The children should tell what made it and why and where it came from. The important things to bring out are the fact that running water is the agent, and the place of the deposit one where there is a sudden change of slope. If such a cone is visited during or after a rain and revisited, it may be seen to grow. The water will be found to have the typical shape of the whole thing. When such a cone is visited during or after a rain and revisited, it may be seen to grow. The water will be found to have a fresh layer of gravel on some part of their surface to indicate where the growth is taking place. In sand pits and gravel pits they abound and attain great steepness. Here the action of the water is not necessary and the pit face is often lined by a row of cones down which the sand runs freely on a hot, dry day.

Deltas—Some sand and gravel cones are so broad and flat that their slope is only well seen from special points of view. Such a point is the outer edge of the cone, looking up towards the vertex. Very flat cones ending in water at the mouth of a stream and themselves partly under water are known as deltas. The circular outline is often obscured by this partial submergence of low parts, but is real, usual and to be expected. When deltas are recognized as deposits, it is impossible to overlook their underwater parts, since these too have been deposited. Of the world's great examples Niger and Nile deltas show the form plainly, which means not that they are better shaped than others, but that their out-of-waterparts have the typical shape of the whole thing. When
the Greeks called the Nile delta, "delta" or "triangle", which is practically what the name meant to them, no map existed in the modern sense of an accurate delineation of coast lines and other features. The name shows that they thought of the Damietta and Rosetta distributaries as two straight lines and the coast between as another. The curvature in an arc of a large circle described about Cairo as centre, that is to us so evident a feature of this coast, had no recognition with them. To us it is important, suggesting the carriage of river mud about equal distances in every direction from Cairo, where the Nile is held between bluffs. The analogy to the gravel cones is now clear. If it be thought that they are not comparable, because the cone slopes and the delta is flat, further thought will show that they both slope and their differences here are only in degree of slope as again in fineness of material. If the Nile descends but 2 to 3 inches to the mile between Cairo and the Mediterranean, it is 100 miles, and the river bank must therefore be 200 or 300 inches (16 to 25 feet) higher above sea level at the head of the delta than at the mouth of the river. It is because a delta is conical, however flat the cone, that the river builds out the delta front in an arc of a circle which centres at the head of the cone, and the head of the cone is the centre of the circle because it is the highest point or vertex of the cone. It is downhill in every direction from this point and so water runs in every direction from this point. From the standpoint of real out-of-door work this conception of a delta as a flat cone standing in water is far more valuable than the usual one derived from the appearance of the out of water part, as it is represented on maps. This will become clearer if attention is paid to the nature of the irregularities apparent in many maps of deltas or in general in their out of water parts. The Mississippi delta is an admirable example, though the details at the Damietta and Marietta mouths of the Nile, if studied on a large scale map, will serve equally well. The feature that is prominent in these cases is a pair of low strips of land projecting out into the water on each side of each channel mouth. Such pairs of strips at the mouth of each distributary of the Mississippi give that delta its digitate aspect when viewed on the usual map. If the waters of the gulf fell only twenty feet this digitate character would disappear completely, so shallow are the bays between the fingers. The head of

the delta of today is the "Head of the Passes" where Pass A L'Outre, Southwest Pass and South Pass come together. An arc of a circle described from this point as a centre will fairly well follow the outline of the submerged contour line of three fathoms as represented on the Coast Survey Chart.

This that has been called the delta of today has been pushed out from the curved line of the front of an older delta heading nearer New Orleans. The mud that flows Garden Island Bay has been deposited by the Mississippi no less than has the mud that makes up the low strips out of water, already referred to as giving the delta its digitate form. These strips are merely the summits of ridges on the surface of the delta, the channel levees. The detail here given, it should be remembered, is the pedagogical side of the matter. These world map deltas are referred to as suggesting to the teacher the conception of the delta that it is urged to have in mind. The child is to come upon the deposits little streams make at their mouths in a casual sort of way in the course of the mapping. At first sight they are little projections of dirt on each side of a stream at its mouth. In nature water-levels fluctuate so rapidly that what is under water at the time of delta building will be out of water tomorrow or may be brought out at once by deepening an outlet channel a little downstream and thus lowering the water level. Submerged parts will at once come to light and what may sound intricate in this description is in face of the thing itself very simple, i.e. the similarity of cone and delta. The levees exist on the cone but attract little attention until a portion of the cone is submerged.

It may be appropriate to suggest what the teacher may do to help if she is unable to find a delta within the limits of accessible distance. She may help nature a little by so arranging the ground in the most suitable place that the first heavy rain there may do the rest. This will be better than modelling the whole thing which is not to be recommended for a moment. What the children should study is not the conception and execution of any teacher, however competent, but an actual natural product. Some day while it is raining or just after the rain has stopped, but before the water has ceased to run in roadside gutters, dam one of these up with sand and gravel. The water will overflow at the lowest point of the dam, cut this down and build a delta with the material cut away. By diverting the stream at the moment the delta is fairly distinct and renewing the dam, the form that resulted may be studied and may remain there for future use. If there is a gravel or sand pit in your

*No. 194. So the minor delta built on the east side of the Mississippi's main channel at Cubit's Gap is defined by a semicircle described from The Gap as a centre. It resulted from the breaking of the levee at that point.
neighborhood it will afford admirable opportunities for the teacher to set the water building both cones and deltas and for the study of levees it is much better than a voyage down the Mississippi. Any delta that has the usual two ridges extending out into the water will allow them to be traced back upstream and it may be noted at many points that the immediate bank is the highest land along the stream. A creek winding through a meadow has often firmest land for this reason along its bank and one may tread there when the rest of the meadow is soft and marshy. Again spring flood waters, on subsiding often leave fresh strips of sand on the grassy stream banks. The explanation is that the muddy flood waters flow fastest in the main channel because the depth is there greatest. Upon overflowing the lowlands therefore there is a check in velocity of flow the instant any water leaves the main channel. For this reason the greater part of the sediment carried is deposited at the point of overflow, which is the immediate stream bank. All these are levees. Once the thing is recognized, abundant examples will be found on any cone or delta, low ridges along the bank. There are stages of water every spring when these levees are the only thing above water. It is customary to call them natural levees to distinguish them from those that men build. As most of us learn to know the artificial form first, that is good procedure. It will be a result of a more natural procedure, however, to call the thing levee, as soon as it is recognized and leave the name artificial levee for the work of man. They are among the least conspicuous forms that we urge on the attention of children, but have no difficulty if looked for at the proper season.

2 Flood Plains—The flatter forms of cones have their surface continued far up their valley-forms, when these are wide and shallow, by flat regions under water at flood times and therefore known as flood-plains. They are missing where descents are very steep. They are characteristically accompanied by the windings in the streams known as meanders; in which the waters wash first one side then the other of the valley, while the flood plain comes thus to lie alternately on the right and left banks of the stream. Where valleys of some size are studied these flood-plains will be found to be the best farming land, but liable to the disadvantage of floods. They are significant all over the Lower Peninsula, as river-flats. An attempt should be made to find them in the tiny streams as well as the great, to get a concept of them as a whole.

Soils—The deltas and flood plains visited will afford many good examples of soils. The general concept of the earth as a ball of rock is to be enlarged with the notion of the soft earth as composed of rock fragments. Gravel cones give good illustrations, grading in size down to sands and muds. Many a gravel pit in Michigan in the spring will show the effect of the frost in splitting some of the pebbles of layered rock into innumerable sheets. Better far if there are ledges at hand to notice the wreckage of tiny fragments of which the soil about consists, all like the parent ledge. In most parts of the Lower Peninsula this is of course not possible, for lack of ledges. Water worn material in the beds of rivers and brooks show distinct rounding of the material from contact with its neighbors as it rolled along. Soils consist of such rock fragments together with a certain amount of plant matter. A loam may have little plant matter, a muck is nearly all vegetable. Flood plains have a good variety of soils. Still water parts are often cut off from the river under high bluffs. Swamp plants grow and decay there until they have filled the place to the level of the plain. The dirt in such spots will be found to be black and muck like. Examination of actual illustrations where they occur and a consideration of their surroundings will prove more valuable than much description.

3 Valley-Forms—From the cone or the delta to the valley form whence it was derived is an easy transition. There is some mud, sand or gravel. Where did it come from? Even a comparison of magnitudes is not impossible, but in this it must not be forgotten that much muddy water may have passed on down the slopes of the land and taken what was washed from the valley out of our neighborhood. There should be no miscalling little things by the names that belong to great. A roadside gully need not be called a valley. It is valley like. It may be called a tiny valley but unless some such adjective is used gully is the name for it. A valley has some magnitude, greater than even a ravine. For geography it comes to attention naturally after cones and deltas, the general concept being a place that is hollow because material has been washed out of it. The deposit and the hollow may easily become so well associated that the one suggests the other. Then the sight of a valley form will at once suggest the question, where is its cone or delta? a question that is less easily answered than its converse, since the change of slopes needed to cause deposition may not occur in our neighborhood, while a delta or cone is seldom too big to be traced back to its valley by a glance.

4 Diveses follow naturally on valleys; they too are familiar concepts. Indeed they are far simpler in many teachers’ thought than in reality. Save in regions of strong mountain relief they are the most difficult forms to bring into school
excursions. Commonly enough in Lower Michigan not a little ground appears to be undivided, i. e. it is difficult to say which way the land slopes. The rain in its embarrassment for the most part sinks into the ground. Locally, however, they occur and may well be looked for, not merely for their own sake, but as helping us to the next form of the land.

Hills—In common speech a strong slope is a hill. Geography only adds that continuance in the direction of the ascent, or in any other direction, leads down again. In whatever direction we approach the summit of a hill we must go up; in whatever direction we leave it we must go down. The hill is of interest as leading to the concept of mountains; imperfectly, it is true, since no one, however well taught, is likely to see his first mountain without astonishment and awe. Yet slopes as strong as the mountains are not uncommon in the clay bluffs overhanging our rivers. Here we may find illustration of the activity with which the earth wears away in mountain regions, and the ingenuity man is put to to find convenient points of ascent, mostly where stream work has prepared the way.

Sixteen excursions or lessons of not more than half an hour each is evidently not too much time to give to the preparation of a map of the area accessible from the school house that lets us bring the class into contact with as many as possible of these land forms. But whatever is done in this direction is sure to be profitable in all the work that follows. A foundation will be laid to which return may be made. It will certainly happen that the children will carry their observation beyond the region visited in class. This need never be urged on them at all. It would be most unwise to urge it, they are so certain to do it without. But he who cites other examples may properly be invited to give expression in a map sketch to what he has seen, and may be led to do so as naturally as children take to all work in drawing.

There is no need that these excursions should stop when the formal work in Geography begins; on the contrary the local features are now revisited to illustrate the distant landscapes studied, and no less to observe the endless change that affects all these forms throughout the seasons. The gain in significance of maps for a child who has had this sort of preparation in their use is very great. Home Geography seems the simplest name for the work. Each week the class go forth to map a part of their neighborhood. It would be better to have as much surprise as possible in the discovery of the thing for which the teacher has selected that particular region. It will be useful to treat it as a thing that happens to be there and is therefore to be mapped. Incidentally it is to be talked about, like a good many other things under the teacher's guidance. The field class must always remain under the teacher's control. This will be all the easier for the definiteness given the work by the mapping element. Children who are trying to do something which they know how to do need little disciplining. The land-form elements are to enter gradually as may plant and animal occurrences that come up from the side of the Nature study, and the teacher that wishes to, will find abundant opportunity to utilize the local knowledge in other class work. It is hoped even that a desire may arise to utilize holiday picnics to reach points beyond the usual distances. Finally the teacher must know her neighborhood better than her class. If she does not do this at first they will not hesitate to teach her and in time she should accumulate a good knowledge of the place. No task laid on teachers today should be so welcome as one that called them more into the out-of-doors.

Direction—In all this work the compass should be in hand. One compass at least to every five or six children. It is the only way to learn direction and will be needed in the last excursion as much as in the first.

Proportions—Deltas, flood plains and valleys are of great importance, since practically all the people in the world live on them. Home examples of these things are of the greatest value therefore. Home examples of swamps on the contrary though they may be very important in some localities have just the amount of importance possessed by the other swamps in the world that they will illustrate. They must not be made overmuch of just because they are at hand. Not all home features but those that lead to knowledge of the earth are to be dwelt on.

THE EARTH AS A WHOLE. I.

In this study of the earth as a whole the globe only should be used. It is thought that about six weeks can be profitably devoted to this topic. See suggested apportionment of time at end of Report.

I. FORM AND SIZE.

A large ball of rock covered with a very thin layer of soil and water. Note proportion (100 ft. or 200 ft. of soil, 8000 mi. of rock, oceans one half mile to one mile deep).

Some real appreciation of the bigness of the earth should be gained from preliminary talks in which the magnitude of the earth is made more real than by the mere statement of its diameter or circumference in miles. The mere statement that men have
sailed around the earth is hardly worth making. To the children the traditional "proofs" are only words.

II. MOTION.

Yearly motion merely mentioned. Winter and summer associated with previous years' observation of length of day and known height of sun.

Daily motion, rotation on axis, poles are points of least motion, equator midway between poles or region of greatest motion.

The use of latitude and longitude should become familiar by many exercises with globes, using only round numbers. As, for instance, a teacher asks a class with globes; 'What do you find in south latitude 25 degrees east longitude 140 degrees?' (Australia.) Such use of latitude and longitude is believed to be very important, while it is of no importance that a child should be able to define either in words.

III. SURFACE.

Continents and oceans, their relative size and position on the globe.

Only very important capes and isthmuses need be taught, as, for example, Capes Horn and Good Hope, Isthmus of Panama, Isthmus of Suez.

IV. CLIMATE. (Only in broadest outline.)

Associate high equatorial sun with summer conditions, referring to our high summer sun, and the low, or absent, polar sun with winter conditions, referring to our low winter sun. That the equatorial and polar suns are high and low must be illustrated with a globe.

Hot and moist in equatorial region (Doldrums).

Dry desert climate in region of trade winds.

Cold in polar regions (Frigid zones).

Hot summers and cold winters with spells of wet and spells of dry weather in regions lying between, (Temperate zones).

V. PEOPLE.

White
Yellow
Black
Malay
Indian

Their home and characteristics (cities, inventions, factories).

NORTH AMERICA, an example of the regional study of a continent. The Schedule at the end of this report suggests that this might be accomplished in ten weeks at the beginning of the fourth grade.

Location. Use the globe; note location in hemisphere, with reference to other continents, in zones, oceans surrounding with Hudson Bay and Gulf of Mexico and the almost sea-like Great Lakes.

Climate. Have children make maps of the heat and rain belts for the continent. As in the World as a whole, seek to have them associate these facts with the weather and sun observations made in earlier years. For the rest it is more important to have them become familiar with these facts by constant reference to them than to force their attention to the explanations. They should see that all life on the continent becomes more intelligible in connection with these facts.

Surface. Study from a good wall relief map, which the children should reproduce.

WESTERN HIGHLAND.

I. General. Location, direction, extent; widest and narrowest places; some general description, as, many or few ranges, wide or narrow valleys, presence or absence of plateaus, many or few rivers and their intermittent character. Associate the interior drainage with the light rainfall.

II. Mountains. Drill the children well to identify on a good map the Rockies, Selkirkis, Cascades, Sierra Nevada and Coast Ranges.

The teaching of names and location of high peaks is not advised since they do not always mean much in the life of a region. However, if a teacher wishes to teach something about some peak, it is suggested that it be well gotten up from the scenic standpoint with pictures and descriptions by travelers. To simply memorize names and locations has no value. If peaks are touched on, let them make a distinct impression. There are some mountains which mean much to the people that live near them like Fuji Yama in Japan, which has so large a place in Japanese art that the mountain is entitled to a place in Japanese geography. Associations of the mountains with details of the heat and rain belts are to be carefully noted and learned.

III. Plateaus and Valleys. Locate and describe Great Basin and Mexican Plateau and learn their height in miles. Note the long narrow valleys between the western ranges. The Valley of California is the most important of these. It finds a southern continuation in the Gulf of California and northern ones in Puget Sound and the Alaskan Sounds which are submerged just as the Valley of California is itself in the neighborhood of San Francisco.
IV. Life of the people: (a) physical conditions leading to particular occupations, (b) the occupations, (c) the resulting products.

(a) Associate the physical characteristics with the chief occupation of the people—farming in the valleys and lumbering and mining among the mountains and plateaus. Make plain the kind of region that is adapted to each occupation; the rich soil of the valley suited to farming where the rainfall is sufficient as in the north and in those parts of the region farther south where irrigation from the mountains is possible: the forest growth on mountain slopes and plateaus where rain is observed to fall and the ground too rough for farming, designating these regions for the lumberman; the frequent presence of minerals among mountains, low or high, which makes mining possible. This connection between a region and its occupation should be made so clear that whenever similar regions are studied, the thought of the occupation will arise. In this regional study only such occupations as can be clearly related to the ground should be taught. A teacher who undertakes to explain all occupations everywhere will find a large task on her hands. Now the task is to lay the foundation for some associations clear enough to make an impression.

(b) It is in the study of the occupation itself that the teacher has an opportunity to picture the life of a people. For example, learn from the text the chief mining localities of the Western Highland. Then by reading, by pictures, by oral description, build up characteristic pictures of a mining camp. The appearance of the town, the descent into a mine, the work and dangers there, and in a general way, without technicalities, the process of extracting the metal from its ore. Show specimens of the ore and the metal, discuss uses. To sum up with the physical condition of the country as a background, secure a vivid mental picture of the life of the people in a locality given to the particular occupation studied. The mistake should not be made of making a study of occupations that are carried on near one without any regard to their intelligibility in relation to the region, at least in the geography hour.

(c) Briefly run over the particular products resulting from the occupation and what becomes of them.

EASTERN HIGHLANDS.

Study as before, making constant reference to points of likeness and unlikeness to the Western Highland. Everything studied is to be regarded as conquered ground and should now be used to make the new work clearer. A distinction should be made out with the help of the map between the Appalachian ridges with their long smooth crest lines and the moderately rugged mountains of New England and North Carolina. Fishing and manufacturing appear as new industries, fitly associated with New England. By far the best relief map of the United States is that published by the Geological Survey, at Washington, and sent to anyone postpaid on receipt of eight cents.

ATLANTIC AND GULF COASTAL PLAINS.

In the same manner. The relief map, the rainfall and the temperature maps are to be constantly studied.

INTERIOR LOWLAND.

There is some confusion in text books in general names for this region. Mills's International Geography includes in it the Mississippi Valley, the Northern Plains and the Great Plains.

I. General. Build up a clear mental picture of the topography of the great interior,—the wide plateau nearly a mile high beside the Rocky Mountains, the gradual descent thence to the low valley floor of the Mississippi and the ascent beyond to the lower narrower plateau west of the Appalachian ridges, slopes so gentle that the ground is flat to the eye, the more abrupt descent further north to the valley of the Mackenzie. Note the character and number of rivers draining these slopes and select a few to memorize.

II. Life of the people. As before. Not all the occupations but the type occupations, those that characterize the region and have a clear relation to it. Farming (agriculture) should be more emphasized here than in the Western Highlands. Mining, as it occurs here should be less dwelt on than in the mountain regions with which it is desired to associate it. It is not a part of the plan to tell all of the occupations of these regions but to grasp certain associations for use in the more intensive study of later years. There will be no repetition in our "two goings over" but the first supplies concepts and relations for the second.

WHAT TO MEMORIZE.

There are some features of the outline and topography of a continent that are worth learning thoroughly. The time of undertaking this regional study is a good one.
to attend to this. A few names, hardly more than ten or fifteen even for North America, should be made very familiar by energetic memory drill, just those that are necessary. Great Salt Lake in the Western Highland, the Mississippi and Missouri and Mackenzie rivers in the Interior Lowlands, and so others.

HOW THE CHILDREN ARE TO LEARN THEIR FACTS.

The children are to learn to tell what is clear on a good map. They must have the good map. The Sydow-Habenicht World in Hemispheres is this and may be imported from Justus Perthes, Gotha, Germany for a little over $5.00 free of duty. It will answer all purposes of elementary study. Separate maps of the continents are of course desirable if the schools can afford them. Varnish is highly undesirable. By its reflections it makes the map invisible from many directions. If the map is kept rolled when not used, not left hanging on the wall day after day, it will keep clean without varnishing. Then the teacher must accustom herself to find the facts described in her books on the map that she may teach the children to read the map direct. If she does this with some care she will find that some maps in the market are unreliable even in greater features. She must demand better ones. When American teachers demand the best maps in the world, the American publisher will make them.

The text book should leave its place of sole source of information, for the fitter one of one of many sources.

GERMANY, EXAMPLE OF INTENSIVE STUDY OF AN IMPORTANT COUNTRY.

Notes. The time suggested for this work is eight weeks near end of grade V

The meager treatment of each of the countries in the regular text book makes resort to other sources of knowledge positively necessary in the intensive study of any country. For the work outlined below, in addition to several of the best late school text books, the following are needed for reference. They are likely to be just as useful in the study of any other country of Europe as in that of Germany. Carpenter’s Geographical Readers, Europe, American Book Company $.70; Our World and its People, Book V, Modern Europe, Silver, Burdett and Company, $6.00; International Geography, D. Appleton and Company, $3.50.

I. Position and Extent. Lies nearly in the center of Europe, the greater part of it north of the parallel marking the northern boundary of the United States. Its longitude is nearly the same as that of the Italian peninsula on the south and the Scandinavian peninsula on the north of it. It reaches from the Alps and the Erzgebirge on the south to Denmark and the Baltic and North seas on the north, and from Holland, Belgium and France on the west to Russia and Austria-Hungary on the east. Almost two thirds of its boundaries are land frontiers and one third, on the north, is sea coast.

Its area is about four times that of Michigan and one seventeenth that of the United States, while its population is three fourths as great as that of the United States and twenty three times as great as that of Michigan.

Direct attention to the great commercial advantages of its position.

II. Surface. Lead pupils to gain from relief map as much as possible of the following.

Southern half a low plateau from one fifth to two fifths of a mile above sea level and sloping to the northward; northern half a sandy lowland merging on the east into the plains of Russia and on the northwest into the “netherlands” (lowlands) of Holland. This northern part is somewhat rolling on account of the deposits of drift left by the Scandinavian glaciers. Compare with Southern Michigan which has received most of its soil as glacial deposits brought from Canada.

In studying drainage, note that the Danube is connected with the Rhine by canal; the nearly parallel turns in three of the rivers of the northern plain from a westerly to a northerly course (changes supposed to have been caused by earth movements ages ago) and the fact that their old beds have been made into canals for commercial purposes.

Nearly one fourth of the country is covered with forests. In studying the Rhine note that in carving out the valley through which it flows it has obtained the material to build Holland. Find pictures and read description of the beautiful scenery along its banks, the castles with their legends—as Bishop Hatto and the Mouse Tower, Ehrenbreitstein, The Lorelei, the Drachenfels; the vineyards on rock terraces, sometimes where the precious soil has been carried in baskets and walled in with rock to retain it; the cities, as Cologne with its wonderful cathedral that was six hundred years in building, a church said to contain the bones of 11,000 massacred virgins, a bridge of boats and many other attractions. Compare the Rhine scenery with that of the Hudson or the Col-
umbria or of both. Note that as it drains a slope of the snow clad Alps, its volume is great throughout the summer and its value to commerce greatly increased thereby. Its many attractions have made it one of the great tourist routes of Europe. Note the historic interest connected with it. Caesar and his legions fought the early Germans on its banks, France and Germany have fought time after time for its possession, etc.

Nearly one fourth of the country is covered with forests, mostly under government care.

Climate. Study with rainfall and temperature. Comparatively uniform, warmer in winter and cooler in summer than that of Michigan. Average rainfall about twenty eight inches, seven tenths of that of most portions of our country east of the Mississippi but about the same as that of Michigan. The elevation of the southern plain makes its temperature about the same as that of the northern. Average annual temperature and average annual rainfall gradually decrease from the southwest to the northeast. While Baltic ports are closed a portion of the winter, the North Sea is usually open throughout the year, a fact of great commercial importance to Germany. Compare New York and Philadelphia.

Occupations and Productions. About two fifths of the people are engaged in farming and grazing, one third in manufacturing, one twelfth in trade and the remainder in mining and various other pursuits.

Agriculture and Grazing. Wheat, barley, tobacco and hops are the chief products in the southwest; rye, oats and potatoes in the remainder of the country. Sugar beets are grown in the central portion, cattle are found wherever the soil is too light and sandy, or, too rugged for agriculture. The Rhine valley is noted for its vineyards and its wines. The plains of the Alpine foreland and of the north are quite largely devoted to horse breeding. Many swine are kept near the beet fields and distilling is extensively carried on in the northeastern section. Direct attention to the great care taken in fertilizing the soil and the thoroughness in its cultivation, and the fact that women do much of the field work. Remember the dense population.

Mining. Iron and coal are widely distributed throughout Germany. The low mountain region lying east of Aachen and extending across the country to Russia is rich in ores of silver, copper, lead and zinc. From this region comes nearly half of Europe’s production of silver, more than half of its production of zinc and considerable quantities of copper and lead. Compare this region with Michigan’s Upper Peninsula as to surface and production. In the northern plain are “sunken” mountains in which are salt mines. Find a description of them somewhere.

Manufactures. One third of the inhabitants of Germany are engaged in manufacturing. The iron and textile factories are chiefly gathered about three centers, viz. Cologne, Dresden and Chemnitz, and Breslau. Make a study of each of these centers and of the “rural manufacturing” in south eastern Germany where the peasants spin and weave flax and wool, make lace and carve wooden articles in their own homes, also of the weaving of cloth and making of clothing in the flats (sweat shops) in Berlin and other cities, also of the making of wooden toys in the Thuringian forests. Compare the wages received by these people with those paid for similar work in America. Note the general location of the manufacturing cities near the southern border of the northern plains and find a reason for it. Observe that the rural manufacturing is carried on in portions of the country where the people lack other employment for a considerable part of the year and where farming can not be successfully pursued. What is Germany’s rank in Europe as a manufacturing country? The Germans mine and manufacture on scientific principles, and employ the most approved machinery and processes; excellent result of the German educational system. We have patterned after them in the beet sugar and cement factories in Michigan. Make as complete a study as possible of these industries.

Commerce. First study from the map Germany’s wonderful system of water transportation; seas on the north, like Michigan’s lakes, the navigable rivers reaching far inland, the canals connecting these, especially the Kaiser Wilhelm canal, cutting off the dangerous voyage around Denmark. Next note the network of railways that cover the country and are owned by the government. With such facilities for transportation, a thickly settled country, great manufacturing centers and great and rich neighboring nations who need to buy and sell, what is likely to be Germany’s rank in commerce in Europe? Observe the position of Hamburg, its facil-
ITIES FOR SENDING GOODS TO ALL PARTS OF GERMANY AND THE COUNTRIES EAST AND SOUTH OF IT, AND FOR GATHERING, WITH RETURN, THE ARTICLES THAT ARE TO BE SENT TO OTHER COUNTRIES. SHOW PICTURES OF, AND READ ABOUT, THE DOCKS ON THE BANKS OF THE ELBE, THE SHIPS THAT DISCHARGE AND RECEIVE CARGOES THERE. FROM WHAT COUNTRIES DO THEY COME, WHAT DO THEY BRING, WHAT DO THEY CARRY BACK? READ AND TALK ABOUT THE STOCK EXCHANGE WHERE PRODUCTIONS FROM ALL COUNTRIES OF THE WORLD ARE BOUGHT AND SOLD, THE ZOOLOGICAL GARDENS WHERE ONE MAY BUY AN ELEPHANT, A MONKEY OR BOA CONSTRICTOR. THINK OF THE CITY AS CONTAINING ONE THIRD AS MANY PEOPLE AS THE WHOLE STATE OF MICHIGAN. STUDY OTHER SEAPORTS AS BREMEN AND STETTIN. GERMANY'S FOREIGN TRADE IS GREATEST WITH GREAT BRITAIN AND NEXT WITH THE UNITED STATES. WHAT IS SHE LIKELY TO SEND TO EACH, AND LIKELY TO RECEIVE FROM EACH? HAVE YOU EVER SEEN ARTICLES FOR SALE MARKED "MADE IN GERMANY?" WHAT DOES IT MEAN? WITH SUCH AN EXTENSIVE FOREIGN TRADE, WHAT IS LIKELY TO BE TRUE OF THE NUMBER OF SHIPS OWNED BY GERMANS?

CITIES. BERLIN, THE CAPITAL, WITH ALMOST AS MANY INHABITANTS AS THE WHOLE OF MICHIGAN, NOTE ITS POSITION WITH CONNECTIONS BY RIVERS, CANALS OR RAILROADS WITH ALL PARTS OF GERMANY AND WITH THE CAPITAL OF EVERY OTHER EUROPEAN COUNTRY; ITS BEAUTIFUL STREETS AS, THE AVENUE OF VICTORY, THE UTER DEN LIN DEN, WITH ITS BRANDENBURG GATE. SEE THE MAGNIFICENT STATUE OF FREDRICK THE GREAT STANDING BEFORE THE PALACE OF THE EMPEROR. VISIT THE GREAT PALACE WHERE THE FLOORS ARE SO POLISHED THAT THE ATTENDANT GIVES EACH VISITOR A PAIR OF FELT SLIPPERS TO WEAR OVER HIS SHOES WHILE GOING THROUGH THE BUILDING. SEE THE UNIVERSITY BUILDINGS, THE FAMOUS PICTURE GALLERIES AND THE ROYAL LIBRARY WHERE IS KEPT THE FIRST BIBLE THAT WAS EVER PRINTED WITH MOVABLE TYPE. OBSERVE HOW CLEAN THE STREETS ARE, AND THAT THEY ARE KEPT SO BY BOYS, WHO SOMETIMES SCRUB THEM WITH RUBBER MOPS SOMEWHAT LIKE THOSE USED ON STORE WINDOWS IN OUR TOWNS. THESE BOYS WORK FOR TWENTY-FIVE CENTS A DAY. SEE THE QUEER ADVERTISING TOWERS ON THE STREET CORNERS. LEARN ABOUT THE "FLATS" OR APARTMENT HOUSES WHERE THE POOR PEOPLE LIVE IN THE BASEMENT AND ATTIC AND THOSE NOT SO POOR, IN THE STORIES BETWEEN. NOTICE THAT THESE HOUSES ARE HEATED WITH BIG PORCELAIN STOVES THAT ARE Seldom TOO HOT TO AFFORD A COMFORTABLE SEAT. VISIT THE MARKET IN WHICH 2,000,000 GEESE ARE SOLD EVERY YEAR, AND 40,000,000 POUNDS OF LIVE FISH EVERY MONTH. WHAT IS THERE IN GERMANY THAT IS FAVORABLE TO THE PRODUCTION OF SUCH FOOD?

STUDY OTHER CITIES, AS DRESDEN, WITH ITS CHINA FACTORIES AND ITS FAMOUS PICTURE GALLERIES, IN ONE OF WHICH IS THE SISTINE MADONNA, FOR WHICH MILLIONS OF DOLLARS HAVE BEEN REFUSED, AND LEIPZIG, THE BOOK CITY, ETC.

GERMAN PEOPLE. LEARN OF THEIR NATIONAL CHARACTER AND CUSTOMS; THEIR LOVE OF OUT-OF-DOOR LIFE, AS SHOWN IN FAMILY AND SCHOOL EXCURSIONS; PLEASURE IN PHYSICAL CULTURE, AS SHOWN IN "TURNER" SOCIETIES; THEIR WARLIKE SPIRIT; INTENSE PATRIOTISM; LOVE OF FINE MUSIC; ADMIRABLE FAMILY LIFE AND CUSTOMS; LOVING CARE OF THE AGED; CHRISTMAS AND EASTER FESTIVITIES; THEIR MENTAL VIGOR; COMPULSORY EDUCATION AND MILITARY SERVICE AND THEIR NUMEROUS UNIVERSITIES AND SCHOOLS FOR TECHNICAL AND COMMERCIAL TRAINING. SOLDIERS ARE TO BE SEEN EVERYWHERE. HOW DOES THEIR ARMY COMPARE IN NUMBERS WITH OUR OWN? WHY DO THEY NEED SO LARGE A ONE? WHAT IS LIKELY TO BE THE EFFECT OF TAKING SO MANY MEN FROM THE PRODUCTIVE RANKS OF THE COUNTRY?

BY PICTURES TRY TO GIVE PUPILS AN IDEA OF THE QUANT AND ORNATE ARCHITECTURE TO BE SEEN IN THE OLDER PARTS OF GERMAN CITIES.

HISTORY AND GOVERNMENT. A BRIEF ACCOUNT OF THE BRONZE BUND (GERMAN UNION), 1815-1866; WAR BETWEEN PRUSSIA AND AUSTRIA, IN 1866; FORMATION OF THE EMPIRE, IN 1870; BISMARCK AND OTHER GREAT MEN. A COMPARISON OF THE FORM OF GOVERNMENT WITH THAT OF THE UNITED STATES; UNION REPLACING CONFEDERATION. RAPID GROWTH OF THE EMPIRE SINCE 1870, IN COMMERCE, WEALTH, POPULATION AND INFLUENCE IN THE WORLD. THE LARGE NUMBER OF GERMANS AND DESCENDANTS OF GERMANS IN THE UNITED STATES. WHY HAVE SO MANY LEFT SO FINE A COUNTRY?

SCHEDULE OF SUBJECTS BY GRADES.

THE COMMITTEE BELIEVES IN LEAVING GREAT FREEDOM TO INDIVIDUAL TEACHERS AND SUPERINTENDENTS IN ALL MATTERS OF DETAIL, BUT TO MEET THE POSSIBLE QUESTION CAN ALL THIS BE ACCOMPLISHED IN THE TIME PROPOSED, THEY SUGGEST THE FOLLOWING SCHEDULE WHICH SHOWS ONE WAY IN WHICH IT MIGHT BE DONE.

TEN COUNTRIES OTHER THAN THE UNITED STATES ARE NAMED FOR INTENSIVE STUDY. IT IS HOPED THAT A DESIRE WILL BE FELT TO MAKE SOME CHANGES IN THAT LIST, OR ADDITIONS TO IT. AT LEAST IT WILL BE ADMITTED THAT THOSE COUNTRIES ARE WORTH KNOWING PRETTY WELL, MUCH BETTER THAN MANY OTHERS. WE WOULD PREFER TO SAY, "SOME IMPORTANT COUNTRIES," BUT THE DEFINITE NAMING OF THESE SUGGESTS THE SORT OF
thing the committee has in mind. In the same way, the order in which the continents should be treated is believed to be a good one, very likely it could be changed without loss, and perhaps with advantage. So too, the order of studying the more important countries. Such results as the committee offers, it has come to, after many months of consultation and deliberation. It would not be strange if some readers found details here and there that might not please them on first reading that will appeal to them more when they know them better.

GRADE III.
Observational or Home Geography, throughout the year.

GRADE IV.
The World as a Whole 6 Weeks.
Regional Study of North America 10 Weeks.
Regional Study of Europe 10 Weeks.
Regional Study of Asia 6 Weeks.
Regional Study of South America 4 Weeks.

GRADE V.
Fuller Study of United States and Mich .. 10 Wks.
Regional Study of Africa 4 Weeks.
Regional Study of Australia 4 Weeks.
Intensive Study of Great Britain 10 Weeks.
Intensive Study of Germany 8 Weeks.

GRADE VI.
Intensive Study of France 8 Weeks.
Intensive Study of Russia 6 Weeks.
Intensive Study of Japan 6 Weeks.
Intensive Study of China 4 Weeks.
Intensive Study of India 4 Weeks.
Intensive Study of Brazil 3 Weeks.
Intensive Study of Chile 3 Weeks.
Additional 2 Weeks.

GRADE VII.
Intensive Study of Argentine Republic .. 3 Weeks.
Intensive Study of Other Countries 15 Weeks.
Intensive Study of United States 18 Weeks.

A GOOD NIGHT SONG.

Gwine tow sleep, youh lill' darkey,
Cuddle down, youh sleepy head;
Buggah-man an' haunts ken't git youh
In youh lill' trundle-bed.

Jes a'cause youse brack, ma honey,
Dat's no sign dat God don't care.
Laws! He lub us niggahs shu'ly,
He am watchin' eberywhere.

In de dark night, still an' lonely,
Brack an' white am same tow Him;
He can't see a bit ob diffrence
'Twix' Marse Tom an' lill' Jim.

Go tow sleep, youh lill' darky,
Shet youh shiny eyes up tight,
Stars am twinklin' in de heben,
Blinklin' tow youh, "Jim, good night."
—Alice Von Stein, '05, in the Mount Holyoke.
The first process in number work is counting. While no formal instruction, even in counting, may be given in the early part of the first grade, yet the idea of number is constantly present. For example, in the reading work the child is asked to read the next three lines or to write a word four times; in nature study he counts the number of claws of the cat or the number of petals of the flower. In this way the number work is at first correlated with the other class work.

When formal instruction first begins, visible objects should be used. Care must however, be taken that the ordinals are not mistaken for the cardinals. Children sometimes think of the fifth in a group as five.

Printed or script number words should be used before the figures. It may be well during the first year to teach the child to read and write numbers to 100 in the Arabic (Hindu) notation. Numeration, however, should precede notation. The child should be able to find and to read the page numbers in his reading books.

The aim in the early part of the course is largely utilitarian, yet the proper method of presenting even the primary number combinations and the fundamental processes will have a splendid educative influence. The order of presentation should be both logical and psychological. Addition and subtraction should be the first processes to receive attention. A large number of the forty-five combinations of addition should be pretty well known and some practice in adding several numbers of one digit given before taking up multiplication and division. The plan once in vogue, and which may now have some advocates, of having multiplication and division kept abreast with addition and subtraction is neither logical nor psychological. That the plan is illogical is seen from the fact that multiplication comes from a special addition, one in which the addends are all equal. The unpsychological character of the procedure is clearly indicated also by the increased difficulty of teaching multiplication and division. To make and learn the forty-five facts of multiplication requires a later development on the part of the child than is required by the facts of addition.

The primary combinations in addition are discovered by counting. The number table and concrete objects to induct the child into the idea of number are imperative. But when children know the combinations perfectly it is folly to still adhere to concrete devices of any sort. As long as concrete forms are necessary, however, objects in variety and plenty must be provided. While a blackboard and a number table are almost indispensable, there should be provided common objects, like buttons, shoe-pegs, grains of corn, for counters; sticks or splints one, two, three, four, six, and eight inches long; foot-rulers graduated to inches; squares and oblongs of cardboard of various sizes; one-inch cubes; prisms of various dimensions; toy money; pint and quart measures; domino cards; cards for number perception and quick combinations; etc.

As a preparation for adding several numbers, the child should see the similarity of $2+15$ to $2+5$, $3+24$ to $3+4$ etc. and then drill upon adding any number of one digit to a series of numbers ending in the same digit. Thus, “add 7 to 35, 26, 76, 16, 46, 56, etc.”.

Among the many drills that may be given in addition and subtraction the following are very valuable: count by 2's, 3's, 4's, 5's, etc. to certain limits; count from a given number forward or backward by any number; these, however, are merely suggestions. Successful number-teaching depends upon the skill, enthusiasm, versatility, and training of the teacher.

Multiplication should be developed by the addition of equal addends. The child finds two 2's, two 3's, four 5's, etc. by finding their sums. By remembering these sums, when they are again wanted the time taken to add is saved. At first the expression four 5's is preferable to four times five. When the child is given the notation for multiplication he will see the expression “5×4” as
Children should make their own multiplication tables not only by adding equal addends but by shorter forms. Thus since the child may know that \(4 \times 7 = 28\), he should see that \(5 \times 7\) is just 7 more than 28, hence is equal to 35. The child should also discover with objects that \(4 \times 7 = 7 \times 4\), etc. Then a part of each new table is already known from the old. For example when the 7's are taken up the first combination is \(7 \times 7\).

Children rightly taught, then, have a correct notion of the meaning of multiplication, can make any part of the table that may be forgotten, and can see that the new process is justified as a time saver. Rational instruction not only enables the child to make his own tables and gives him a clearer notion of what he is doing, but it aids the memory also. One becomes sure of the tables much sooner by the plan outlined above than by the plan formerly used of rattling off the tables without a glimmer of the meaning of what was being said.

While written exercises and problems involving multiplication will be given, even while the tables are being learned, oral drills in the tables should not cease until the child can give any combination of two factors less than ten instantaneously.

Division being the inverse of multiplication should be taught with it. When the child knows that four 5's are 20 he ought also to know that he can take 5 from 20 four times, that there are four 5's in 20, or that \(20 \div 5 = 4\). He should also use the notation \(\frac{1}{4}\) of 20 = 5 and \(1 \frac{5}{20} = 4\). This notation, however, is a short expression for an operation and should not at this time be considered a fraction. It denotes that a number is to be divided into parts. While drilling upon multiplication and division such exercises in partition as finding \(\frac{1}{2}\), \(\frac{1}{3}\), \(\frac{1}{4}\), \(\frac{2}{3}\), \(\frac{2}{4}\), \(\frac{3}{4}\), etc. of exact dividends within the limits of the tables learned give a valuable drill in both multiplication and division. The expression \(\frac{3}{4}\) should be read “three fourths,” but the idea of a fraction need not be developed at this time. \(\frac{3}{4}\) of 16 means merely that 16 is to be divided into four equal parts and one part multiplied by three. \(\frac{3}{4}\) then, is a short-hand expression for the two operations, division by four and multiplication by three.

Great care should be exercised that the necessary drills that must be used to secure accuracy and rapidity be so varied as to keep up the interest. Counting by 2's, 3's, 4's, etc., diagrams of various forms, easy written work, number cards, etc. should be used.

While developing the primary number combinations, ability to see number relations should be developed. When adding and subtracting compare by differences. Thus, to compare 8 and 5; 8 is 3 more than 5 and 5 is three less than 8. When studying multiplication and division compare by quotients. Thus to compare 8 and 24; 8 is \(\frac{1}{3}\) of 24 and 24 is 3 times 8.

Notation and Numeration.

Until comparatively recent times, numbers were not written as we write them today. The characters used, as might be expected, varied greatly, but the principles of combining the characters to denote different numbers, excepting in our Hindu system, were quite similar. Most nations used the additive, subtractive, or multiplicative principles. Thus in the Roman system IV means V less I, while VI means V plus I. While the various systems were ingenious, they were not well adapted to arithmetical computations. They served merely as a means by which results were recorded.

The Hindu system, formerly called the Arabic, is the system now in general use. This was the first system that enabled computers to do away with the abacus and perform all the operations with numbers of any size without counting. By this system the fundamental processes may be performed with any numbers by operating with but two numbers at a time, and these two numbers always less than the base ten. Were it not for the place value feature of our notation which enables us to break any number into parts, we would not be aided in getting the combinations of larger numbers by knowing the primary combinations. The perfection and power of the system, then, lies in the principle of place value which is made possible by the introduction of the zero.

Since the four fundamental processes with numbers of more than one digit depend upon our notation, the place value feature and the decimal scale of relation should be made clear when children are first taught to read and write numbers. When teaching children to count, the decimal feature should be brought out. That is, the grouping by tens, and how the names suggest the grouping, should be shown. Have the child count objects then group them into tens. Thus count thirteen splints or tooth-picks, group ten of them and discover that thirteen means three and ten. In the same way discover the meaning of twenty (two tens), thirty-five (three tens and five), etc., to one hundred. Now when a child is shown that twenty-six is written 26, and that the 2 represents the tens and the 6, the ones, he will be able to read or write all numbers to 100. In the same way forming and expressing numbers greater than 100 can be shown.
Most teachers of English agree that during the first eight years of school life the pupils should as far as possible acquire three things: (1) A taste for good literature. (2) The ability to use their mother tongue with some degree of ease and correctness. (3) A definite knowledge of a few simple matters of form. This paper aims to present some aspects of the first point, the cultivation of a literary taste in boys and girls.

There seem to be two important factors in the problem, the teacher and the material, the teacher being of superlative importance. It is evident that during the first eight years of school life the child can do comparatively little reading, yet then, if ever, is he eager for books, sensitive, impressionable, receptive; then, if ever, can he be directed, encouraged, fed. Each child is the lawful heir to a great literary inheritance. The teacher must arouse his interest in the legacy. It is her task to fill his mind with glowing pictures of the treasures buried in books and to awaken in him a desire to unearth them. To do this is to give him the key to the storehouse of knowledge, which is also the storehouse of delight. But how shall she accomplish her aim, how develop in her pupils a taste for good literature?

First of all she herself must be a lover of literature. She must value it for the light it throws upon history and philosophy; she must rightly appreciate its ethical content; but she must do more than this. Art is not ethics, or history or philosophy. It is the objective form of beauty, and the teacher who would awaken in others a love for literature must recognize it as such. She who is not thrilled by the beauty of the ideal and the ideal beauty of a great work of art can never inspire in a child’s heart a love for the beautiful. Any attempt to teach a classic where there is no appreciation of the harmony between the form and the ideal, no feeling for the finer effects of color, form, and rhythm, must be deadening to pupil and teacher alike. A mere pedagogical interest in literature as material is of little value; a recognition of its moral or ethical significance will not suffice; and insincerity of taste will at once be discovered and despised. There is for the teacher of English no substitute for a deep and genuine love for the beautiful. This and this alone will prove the open sesame to the spiritual nature of the child.

And not only must she be susceptible and impressionable, but she must also have power of expression, and a voice which lends itself readily to varying shades of thought and feeling. Indeed, the value of a good voice can hardly be over-emphasized. The child during these early years has to learn most of his literature by hearing, not by reading it; hence it is that the teacher’s voice is of the most profound importance. Upon it depends in no small degree her power to awaken a response in the child’s heart, to make the chords of his spiritual nature vibrate in unison with the heart of the author. If her voice is lacking in flexibility, if it is harsh or monotonous, she cannot hope even to hold his attention, much less arouse and quicken his aesthetic faculties. And her voice must have more than a pleasing quality; it must be sympathetic, expressive; the voice of one who is deeply moved, and who does not think it unbecoming to let her emotions be known. Most of our reading is too coldly formal, too repressed. When we are touched by a beautiful thought clothed in beautiful form, we tremble lest our voice should reveal our secret. As though there was anything in the power to appreciate beauty of which we need to be ashamed! The trouble is we are too afraid of being dramatic. Until we understand that the natural expression of genuine feeling is the best possible kind of literary interpretation, and that by this means more than by any other we are able to touch the deepest springs of a child’s nature, we are not prepared to accomplish the best results; for good reading on the part of the teacher cultivates the child’s taste for good literature as nothing else can.

But there are times when the printed page, however well rendered, will not suffice, and the teacher must fall back upon her own powers of expression. She must be a good talker, and above all, a good story teller. She must, in a sense, be a creator of literature. Her speech must be correct, but what is perhaps of more importance, it must be spontaneous, and interesting. There is something in a story fresh from the lips of a live teacher with the power of depicting vividly and naturally, which the printed page can never give. Who that has seen a roomful of boys and girls, listening with eager faces to a story graphically and beautifully conceived, and throbbing with feeling, can doubt that forever after life was to them a somewhat richer and more beautiful thing?

And unless we can thus command their interest our efforts are worse than wasted. It is of no
use to ask children to pay attention. We criti-
cise our own powers of speech when we do so.
Samuel Thurber says that "the most important
professional accomplishment in any teacher is
the art of being listened to," and he might have
added that the secret of that art is the ability to
use the mother tongue effectively. The teacher
who can by her mastery of speech make her
pupils strain every nerve to hear has reduced the
question of interest to its lowest possible terms,
and has, moreover, quickened the intellectual
faculties of her pupils, stimulated their emotions,
and increased and enriched their store of lan-
guage. If you doubt the truth of this, listen to
a child as he retells the story told him by a good,
story-telling teacher. If only once we could play
the part of audience to our own stumbling, stupid
speech, we should not wonder that our pupils go
on from day to day wholly indifferent and un-
changed. And we can offer no reasonable excuse,
for the way to learn to talk is by talking, and the
way is open to all. Why not practice what we
wish to say until we can make it issue glowing
with life? There is a world of satisfaction in
the knowledge that we have been able to give our
thought its fitting form, that through the medium
of words we have perfectly shared our ideas and
feelings with another.

But the English of these early years is not to
come wholly from the lips of the teacher. There
must be books and easy access to them. The
teacher must know what ones are to be had and
how to get at them. She must know the library
and lead her pupils to know it. If they are not in
the habit of getting books, they must be encourag-
ed to do so; if they are, their interest must be
maintained by leading them into new and con-
stantly widening fields. The teacher should keep
in touch with the living writers of children's
stories, know what new books are appearing, and
call the attention of her pupils to them. From
time to time she may give the children enticing
glimpses of her own reading world, and she should
lead them in turn to share their new and treas-
ured books with her. In a word, she must be an
intelligent and enthusiastic booklover, equally
skillful in giving and in soliciting.

In the choice of books for general reading child-
ren may on the whole be safely trusted. They
are usually very certain what they want, and
their natural appetite is at least a fair indication
of their needs. Where we do not wholly approve
of their choice, we should be very cautious and
tactful. We cannot make them like the books
we do by merely imposing our choice upon them;
and perchance the books we like are not the wisest
after all. It is easy enough to become too crit-
ical regarding the literary merit of children's
books. I quote from a well-known teacher: "The
children who come to us from bookless homes. are in
a state of imaginative hunger, starving not
for knowledge, but for visions." Later he
adds: "There is no reason why we should
deny them fiction, and their fiction, not
ours." Certain it is we should not try to
force our likings upon them, but should rather
allow them to set up a standard of their own in
accordance with which we can do our work as
guides and inspirers.

In the choice of material for the schoolroom
the development of the pupils must be the chief
determining factor. During his earliest years
the child finds his real world in the realm of
fancy and imagination, and fairy stories are hail-
ed with delight. Somewhat older grown, the boy
takes pleasure in the world of fact. "Tell me a
true story," he demands, and he listens with eager
interest to tales of adventure by land and sea.
His typical hero is Robinson Crusoe. Still a few
years, and he begins to hunger for ideals. The
world is to him a stage where heroic deeds are per-
formed with great eclat. This is the age of hero
worship, in which tales of romance and chivalry
are eagerly read, and Sir Arthur and his knights
are worshipped. The wise teacher chooses her
material in accordance with the ruling tastes of
each of these periods, and thus without waste of
energy feeds the growing mind.

As to the form of the material, it need only be
said that it should be unified in structure and
spirit, beautiful in form, simple enough to suit
the comprehension of the child, but not "written
down" so far as to lose its intrinsic value as lit-
erature. Children are wiser than we think. They
cannot be deceived by sham, but they respond
freely to wise solicitation, and reach out eager-
ly for the best in books and in life.
 THE FOURTH STORY

An Animal Fable From the Malay.

DR. R. CLYDE FORD.

[During my stay in the Far East I became greatly interested in Malayan folk-lore, and got together in one way and another a considerable amount of material bearing on that subject. Some of it I have worked over and published—much of it still lies in old note-books, native manuscripts and texts. The following fable which I translated some years ago, but never used, exists in a more or less similar form in several languages, but its parent source is undoubtedly in Sanscrit. Not more than a year ago Joel Chandler Harris used the same motif in an Uncle Remus poem in The Saturday Evening Post. It would seem, therefore, that there are many touches of nature which make the whole world kin.]

“Hi, my son!” said Brahmin Sumasanama, “It is not prudent to allow what we have fast in our hands to get away from us. Afterwards we may be sorry for it, like the crocodile who set at liberty a monkey he had in his power, thereby receiving a lesson that brought him his death.”

“What is the story, my Lord?” asked the prince. Thereupon the Brahmin began:

—Once upon a time there was a certain river with kadamping trees along its banks. A solitary monkey dwelt among the trees, and every day dropped off fruit into the water below to feed a crocodile that lived there. This was the way both lived day after day.

One time as the crocodile crawled out on the bank to sun himself, he called out to the monkey:

“Hi! my friend, I am preserved by your kindness; I live here in the river under the trees and eat the fruit you drop down; I vow never to leave this spot.”

When the monkey heard this he was greatly pleased and said: “My friend, since you have spoken thus, I will continue to drop down all the fruit you wish, so that we may always be friends and be happy.”

The monkey soon noticed his abstracted air. "Hi, my friend!" cried he, "what are you thinking over? Tell me what weighs upon your mind."

"My friend, you speak truly,” replied the crocodile gloomily, “long ago I left my village and my wife and now I am downhearted."

"Go back and visit your wife."

"But it does not come into my heart to part from you. If you would only go with me to see my loved one, later we could return together."

This plea appealed to the monkey and he felt moved to accompany his friend. So he mounted upon the crocodile’s back and they began their journey. The crocodile swam for some time lost in deep thought. “How can I destroy this monkey?” he said to himself; “I love him dearly.” As he swam he brooded over the matter.

The monkey soon noticed his abstracted air. "Hi, my friend!" cried he, "what are you thinking over? Tell me what weighs upon your mind."

"O my friend, my wife is very sick. She sent another crocodile to inform me of it, and to tell me she does not recover. One very learned man has said that if she had a monkey’s heart to eat perhaps she might be restored. This is why I
When the monkey heard this he grew sick with fear for he thought the crocodile was going to play false with him. He said:

"O my friend, why did you not tell me this before so I might have brought my heart along with me? It is a habit of all the monkeys, you know, to leave their hearts behind them when they go off on a journey. If we return at once we can get my heart, and then, later, minister to your wife."

The crocodile agreed to this and they turned back. But the monkey was anxious. "Swim fast--I am so distressed." "Hurry, my friend," urged the crocodile, "get your heart so we may set out again."

The monkey laughed. "Don't you want to hear a story?" he called down in great complacency. "A story! What for?"

"Listen, then next time don't play the fool."

"Once taere was a Lion-King, and his minister was a jackal who lived in a certain forest. One day the minister came for an audience and was admitted to the presence of the king."

"Hi, my minister!" said the king, 'I have a severe pain in my stomach. If you can get me a donkey's heart to eat perhaps I may speedily be cured."

"In accordance with the command of my Lord will the slave search."

"So he departed and went out into the country till he came to the village of a benara. Here was a donkey whose work it was to carry heavy packs, and who, when released from toil, was hoppled so he could not go far away."

"The jackal approached and said: 'Why is my friend tied up like this? I greatly grieve to see it.'"

"'What can I do? It is my fate. From the time I was bought till this very moment I have done nothing but carry on my back the loads of every man in the community; and when night comes my legs are tied as you behold. Surely I am crushed by an evil fortune.'"

"'We four-footed animals ought not to endure a lot like this,' said the jackal. 'If you will follow my advice you can be free as long as you live. I will go to the Lion-King and obtain for you the rank of a great minister.'"

"'O jackal! they of the lion class do not show any great affection toward the other servants of Allah. Perhaps the king will kill me if I go to him.'"

"'Do not think thus. All your friends have sat under his authority for a long while and suffered no harm. When he is hungry, the lion devours large animals, it is true; but he does not harm his servants. If, however, you are distrustful and lacking in courage, let me vouch for your safety.'"

"When the donkey heard this he was reassured, and followed the jackal who brought him to the Lion-King. As soon as the lion saw him he ran to devour him. The donkey gave a squeal and fled."

"'My Lord, why are you so impatient?' said the jackal. Then ne went again to bring the donkey. 'Why did you run away? It is the custom of the king to hasten to kiss his friends. He is pleased with your appearance and will make you a minister. Because you have been weak-hearted the benara has made a beast of burden of you.'"

"'I came because I believed you; but no sooner did I appear than the king was about to devour me. That's all there is to it.'"

"'Is the king one who wishes to destroy people? And does he depart from what is told of him? During my life no one but you has ever been concerned for his safety. Come with me and follow my advice.' Finally the donkey was persuaded and went to meet the Lion-King."

"When the king saw him he ran at him as before, seized him, tore him in pieces, and revelled in his blood. Then he called to his minister: 'Hi, jackal, sit down here. I am going for a drink.'"

"'The jackal seated himself and plucked out the donkey's eyes and gnawed off his ears. The lion on his return noticed this, 'Why have you devoured his eyes and ears?' he asked."

"'Wonderful are my Lord's questions. If the donkey could see and hear he might still desire to return home.'"

"Then all the jackals came and feasted on the donkey's body. Such is my story.—Now crocodile, you intended to deceive me just as the poor donkey was deceived, but I saw through your schemes in time. Our friendship is broken; I'll get you no more fruit,—henceforth you'll have to shift for yourself.'"

When the crocodile heard this he grew exceedingly contrite, but it did not avail him anything, and in the end he died of grief.

"My Lord Sumasanama," said the prince, "Your servants have listened to your story with great attention. Now, my Lord, tell us the fifth story."

Professor Ford brought from the East what is probably the largest collection of Malay books and literature in America. He was the first to study the etymology of the language in English and was regarded as authority on Malay history and literature at Singapore where he was also a memberof a native literary society. A series of articles on Malay language, literature and folk-lore read by Dr. Ford before the American Folk-lore Society some years ago can be found in the Popular Science Monthly, 1899-1900—Editor.
Normal College News

Published Weekly
STATE NORMAL COLLEGE, YPSILANTI, MICH.

ROBERT M. REINHOLD, General Manager
T. ESTELLE ANGELL, Editor
E. A. BURKE, Business Manager
J. S. LATHERS, Representing the Faculty

SUBSCRIPTION
College Year ... 50 cents
Single Copies .. 2 cents, Magazine number 5 cents

Advertising rates furnished upon application. Address all correspondence to NORMAL COLLEGE NEWS, Ypsilanti, Mich.

Entered at Ypsilanti postoffice as second-class matter.
Main Building, Room 15, Telephone 24.

THE NORMAL COLLEGE SCHOLARSHIP AND LOAN ASSOCIATION.

Less than a year ago the initial steps were taken, by the students of the Normal College, to establish a fund to be used and administered by some organization, as loans to students to assist them to complete their work in the college.

The senior class of '04 raised one hundred dollars; the Oratorical Association presented the same amount and the girls of the gymnasium contributed twenty-five dollars, as the proceeds of their indoor meet. This sum, two hundred twenty-five dollars, was placed in the hands of the president of the college and the council took immediate steps to organize an association which could legally care for such a fund.

This organization now having been formed, it has been thought advisable by the Board of Trustees, to inform the friends of the school and all others interested in such a project, of the nature of this organization, of the plans for the future and of the present needs.

The heads of department of the college have incorporated under the provisions of Act No. 171 of the Public Acts of Michigan for 1903 entitled "An act for the incorporation of associations not for pecuniary profit," under the name of Normal College Scholarship and Loan Association. The purpose is stated as follows: To receive and administer scholarship and other loan funds for the benefit of the students of the State Normal College. The term of the existence of the corporation is thirty years and provision is made for a board of trustees consisting of five members. The president of the college shall be president of the association and also president of the trustees. Whenever any member of the association shall sever his connection with the college his membership shall be filled by his successor. A provision is made whereby any person may become a member by a two-third's vote of all the members.

The annual meeting is to be held on the second Tuesday of June of each year, at which time there are to be elected a vice-president and one trustee whose term of office shall be three years; the trustees shall elect from their own number annually a secretary and treasurer. The board of trustees, at present is constituted as follows: president, L. H. Jones; vice-president, B. L. D'Ooge; secretary and treasurer, C. O. Hoyt; Trustees, Julia A. King, for two years, and E. A. Strong, for one year.

It shall be the duty of the Board of Trustees to administer the funds subject to the following conditions; (1) no loan is to exceed one hundred dollars; (2) no loan to be made to any person below the rank of senior on the life certificate course; and (3) interest on all loans shall be at the rate of five per cent per annum, payable in advance. All interest accruing beyond the necessary expense of the administration shall be turned into the general loan fund. It is further provided that the treasurer shall execute to the Association bonds in such sum as the Board of Trustees may direct, conditioned for the faithful performance of his duties.

The work of the association, thus far, aside from its organization, is as follows: in October by request of Mrs Walterhouse, the fund was increased by the sum of one hundred dollars. Two loans have been made. Each for the sum of one hundred dollars for the term of two years. This leaves a balance of one hundred thirty-five dollars yet to be loaned.

The great need is a much larger fund. A legal incorporation has been effected and all sums entrusted to the care of the association as loans or scholarships will be faithfully administered in accordance with the wishes of the donors and the rules adopted.

This brief statement of a worthy enterprise may well be construed into an appeal to the friends and alumni of the school, to make an effort to enlarge the fund. The alumnus will never lose an interest in his Alma Mater and a little effort on the part of each one of the hundreds of successful teachers, that have gone cut from the institution, will place in the hands of the Board of Trustees a sum of money sufficient to help not a few deserving ones to gain a vantage ground where they can perform a valuable service to the state and do honor to us all.

To this end should the Alumni Association or individual members thereof care to contribute sums in any amount to a fund to be known as the Alumni Loan Fund, this money may be sent to the treasurer who will acknowledge receipt of the same and, from time to time, report as to its disposition.
Matthew Arnold, referring to his habit of reading books, wrote to his sister that he believed if he lived to be eighty, he would probably be the only man left in England who read anything but newspapers and scientific publications. It is certainly doubtful if many are left who still read the preface and introduction to books, though sometimes the cream of the book is lost through the omission. A case in point is The moral system of Shakespeare, by Richard G. Moulton, who first defines his thesis by stating that his title is not intended to suggest that Shakespeare had formed a system of morals which he proceeded to set forth in his plays, but rather in as much as the thirty-six plays make a world of their own, the literary moralist may survey them, and with some degree of methodical order deduce the moral system of the Shakespearean drama. Further notes of interest in the introduction, are on the Fallacy of Quotations; on Plot, which he defines as "The reduction of all the details of a poem to a unity of design;" on the tyranny of words, and the resultant confusion between prose, poetry, and verse; the distinction between the philosopher and the poet; and the final point, often forgotten, of the vital difference between the life of reality, and the life of drama, depending on the point of view of the spectator or the actor.

Readers of Moulton’s former book, Shakespeare as a dramatic artist, will find the author’s characteristics unchanged. His freshness of thought and statement seem always to speak his constant and enthusiastic reading of his author, without the bias of his own, or some other critic’s preconceptions, but his diagraming of plots in the appendix is too complex to satisfactorily square with his own definition as quoted above.

James Huncker, writes no word of introduction to his book, save its dedication “To Richard Strauss, a music-maker of individual style, a supreme master of the orchestra, an anarchist of art, this sheaf of studies is admirably inscribed.” The title reads, Overtones, a book of temperaments, Richard Strauss, Parsifal, Verdi, Balzac, Flaubert, Nietzsche, Turgeneff. If the title induces one to dip into the studies, there is little doubt that it will mean reading to the end. The chapter on Parsifal ends with the words, “We are all Wagnerians whether we rebel at Parsifal or not,” and the attitude of the writer may be seen from a few of his sentences, “Wagner—versatile, mercurial, wonderful Wagner—was a different being every hour of the day,—a Schopenhauerian one hour, a semi-Christian the next. Liszt, Glassanapp, Heckel, Feustel, all show different portraits of this man. A German democrat he was, and a courtier, an atheist, and yet a mystic. * * He was a genius beset by volatile moods. He was a born satirist. He loved to play practical jokes and it would not be surprising if some day we should learn that Parsifal was one of his jokes on an epical scale. * * He was first a musician, then a poet and a philosopher; and in the last of these three he was least. Parsifal is his final offering to the world. It is the work of a man who had outlived his genius. Nietzsche quotes with approval the exclamation of a musician: “I hate Wagner, but I no longer stand any other music. We are all Wagnerians whether we rebel at Parsifal or not.” That the author also is a born satirist is evident on many of his pages, notably those in the sketch on The eternal feminine. Wagner’s name appears again and again throughout the book, and after him, the author writes with most enthusiasm of Balzac, as a music critic.

There are certain classes of books which may safely be bought on the strength of the publishers imprint, and this is certainly true regarding the “Books for supplementary reading and school libraries,” published by Ginn and Co. The title quoted is a small price list recently issued by the house, which list should be in the hands of any school teacher who is selecting any books which lie within its scope. Mr. Edwin Ginn, senior member of the firm was the pioneer in the editing of classics in attractive and inexpensive form for the school room, and unlike many pioneers he still leads in this particular work. The three most recent of these, received by the College library, happily show the wide range. Shaw’s stories of ancient Greece is a welcome addition to collections of these old tales, which are in such constant demand as helps in the teaching of elementary history, as are the other two, whose titles are a key to their contents, The ship of state, by those at the helm, and made up of contributions to the Youth’s Companion, by President Roosevelt, Senator Gage, and Justice Brewer, and others; and The Legends of King Arthur and his court, by F. N. Green.
There is an increase of forty-three students, over the attendance of the fall term last year.

The first graduate from the Manual Training department of the Normal, will be Bessie Beedle, who finishes in June.

Hereafter, the morning devotional exercises will be held at 7:45 in the Athenæum literary society room, instead of at Starkweather Hall.

The girls’ basket ball teams have begun their Tuesday evening practice. The star and stripe teams will be selected from this material, at the beginning of next term.

Dr. Hass, U. of M., ’04, a student volunteer, spoke at Starkweather Hall, last Tuesday evening, on foreign missionary work. He expects to be engaged next year in hospital work, in China.

Mrs. Burton entertained the Normal girls, who remained in town, at the gymnasium, Thursday afternoon. Music and dancing were the principal means of entertainment.

Herbert Witherspoon, the celebrated New York bass, will sing the title role in Mendelssohn’s “Elijah,” at the concert given by the Choral Society, February 17, under the direction of Prof. Pease.

Professor Pease has secured the services of Professor Henri Ern as head of the violin department in the Conservatory. This is practically a combination of the violin departments of the University School of Music and the Normal Conservatory since Professor Ern is also head of the violin department in the former school. He is a violinist of exceptional ability, having studied with Gerhard Brassin, appoldi and the great Joachim and Ysaye. Miss Abbie Owen, of the Conservatory, will be his assistant at Ann Arbor, and hold a similar position here.

The inspiration institute for Calhoun County to be held at Marshall, Friday and Saturday, December 2 and 3, will be conducted by Dr. C. O. Hoyt, Professor D. B. Waldo, principal of the Western Normal School, Miss Martha Sherwood, also of the Western Normal, and James L. Hughes, Inspector of Schools, of Toronto, are the instructors. Among the many good things to appear on the program are: “Education and Civilization,” “Leonard and Gertrude,” “Our Problem,” Dr. Hoyt; “The Growth of the Teacher,” “Our Own Common Wealth,” Principal Waldo; “The Cultivation of Attention,” Miss Sherwood; and “The Ideal Teacher,” Inspector Hughes. The program will be especially interesting and helpful and will surely prove an inspiration to all present.

SORORITIES AND FRATERNITIES.

On Saturday, Nov. 19, the initiation of the Sigma Nu Phi sorority was held at the home of Mrs. Sherzer. Those admitted as members were: Josephine Huyck, Minnie Oliff, Maude McCall, Blanche Rexford and Emma Childs. At the banquet which followed, Miss Boardman presided as toastmistress. Toasts were given by Misses Goodison, Rexford and Oliff. Edith Hoops, Mary White, Anne Cullinine, ’04, and Grace Gerring were here to attend the initiation.

The Kappa Phi Alpha fraternity held their annual initiation and banquet, Friday evening, Nov. 18. The men initiated were William Braley, Ypsilanti; Charles Webster, Oxford; H. L. Stevens, Oxford; Guy Brown, Clarkston; Roy Brown, Clarkston; La Verne Brown, Ann Arbor. Reuben Crandel, Detroit, and Albert Graham, ’04, Flat Rock, were present. The banquet was served at the Hawkins House. Mr. Crandel acted as toastmaster, the toasts being responded to by Prof. Roberts and all the members.

Anna French, Bessie McIntyre and Lydia Herrick were initiated into the mysteries of the Pi Kappa Sigma, Saturday night, at the Church House. After the initiation ceremony, a banquet was served and toasts responded to, by Savannah Marshall, Bessie Beedle, Jessie Wallace, Inez Clark, Lydia Herrick and Kate Thompson. Olga Goetz acted as the toastmistress for the occasion. The out of town guests were: Eulalia Dickinson, Pontiac, and Lucy Brown, Detroit.

Prof. and Mrs. E. A. Lyman gave an informal dancing party, Friday evening, at the Country Club, in honor of the Alpha Sigma Tau sorority. The chaperones were: Prof. and Mrs. Lyman, Prof. and Mrs. J. C. Stone, Miss Pearce and Miss Norton.

Is strictly first-class in its appointments. Twelve courses of study; students assisted to good positions as they become qualified. Call or write for catalog.

P. R. CLEARY, President.
PORTRAITS, SUITABLE FOR FRAMING, OF
IMPORTANT PHYSICISTS AND CHEMISTS.

During the past few days, the writer has received two letters making inquiries concerning certain portraits of scientific men suitable for framing. As such inquiries are rather frequent a word or two on this head may find readers.

It is advisable in the first place, to ascertain whether the desired portrait is found in one or other of the well-known sets of portraits, a few of which are named below:

I. The Open-Court Publishing Co., of Chicago, offers for sale a series of portraits, mostly of psychologists and philosophers, 11 in. by 14 in., for 25c. each. The Mach and the Helmholtz of the set are well worth framing.

II. The English scientific journal Nature, publishes a series of portraits under the title, Scientific Worthies, which are of very high character both as portraits and as engravings. The card on which the portrait is printed is nearly as large as the above, but the print itself is often so small as to be unsuitable for framing. The Dalton, eg., is of this character; while the Rayleigh is so large as to be a very effective picture when framed. This set can be had at about $1.25 each, of the publishers of Nature, or of the Macmillan Co., New York.

III. The Berlin Photographic Company publishes a set of 600 portraits, with letter-press on separate sheet, entitled Neunzehnte Jahrhundert in Bildnissen, for about $28.00. Nominally the plates are not sold separately, but I have found no difficulty in picking them up of European dealers. The set contains a considerable number of scientists, with some strange omissions. All are authentic and many are really very good pictures, and frame well. The same company publishes a set of photogravures of some of the above plates, of the same size but on better paper and of higher excellence, which are sold separately at $1.50 each. Address Berlin Photographic Company, 14 E. 23rd. St., New York.

IV. The Physical Review is also publishing a series of portraits of physicists, somewhat after the manner of No. II., above, at 25c. each. They are small for framing, and yet for the study or small recitation room make fairly effective pictures. Address the Macmillan Co.

V. The L. E. Knott Apparatus Co., 15 Harcourt St., Boston, Mass., is putting out a series of Portraits of Scientists at $1.00 each, or 12 for $10.00, especially adapted for framing for the walls of lecture rooms and laboratories. Those that I have seen are admirably adapted to their purpose. Address as above.

Should any interest in this subject develop, the writer would publish a circular of information concerning the material named above, and to be had through other sources, and giving information about subject, size, authority, mode of reproduction, price, etc.

Some thirty portraits of physicists and chemists have recently been added to the material of instruction in the Department of the Physical Sciences. They are very inexpensively framed and are intended to be rather useful than ornamental. Incidentally they include one or more of each of the above named sets. E. A. STRONG.

This article is in no wise a covert advertisement. It is written upon request in the interest of teachers who asked for the information.—Editor.

Sent on Approval
TO RESPONSIBLE PEOPLE

Laughlin
FOUNTAIN PEN

Guaranteed Finest Grade 14K.
SOLID GOLD PEN

To test the merits of this publication as an advertising medium we offer you choice of

These Two
Popular Styles
For Only

(1.00 Postpaid to any address)

Holder is made of the finest quality hard rubber, in four simple parts, fitted with very highest grade, large size 14K. gold pen, any flexibility desired — Ink feeding device perfect, either style — Richly Gold Mounted for presentation purposes $1.00 extra.

Grand Special Offer

You may try the pen a week if you do not find it as represented, fully as fine a value as you can secure for three times the price in any other makes, if not entirely satisfactory in every respect, return it and we will send you $1.10 for it, the extra 10c. is for your trouble in writing us and to show our confidence in the Laughlin Pen—(Not one customer in 5000 has asked for their money back.)

 sent free of charge with each Pen.

ADDRESS
Laughlin Mfg. Co.
771 Griswold St. Detroit, Mich.
PHYSICIANS

H. B. BRITTON, M. D.
Office, 13-14-15 Savings Bank Block. Residence, 810 W. Congress. Office Hours, 8-10 a.m., 1-3 and 7-8 p.m. Telephone, Office, 222-2; Residence, 222-3.

R. A. CLIFFORD, M. D.
311 Congress Street, Ypsilanti. Telephone No. 253. Office Hours, 8 to 10 a.m., 1 to 3, 7 to 8 p.m. Sundays, 9 to 10 a.m. and 2 to 3 p.m.

THOMAS W. PATON, M. D.
Office 23 N. Washington Street, Office hours: 8:30 to 10:30 a.m., 1:30 to 3:30 and 6:30 to 8:00 p.m. Residence 603 Ellis Street. Phone No. 351 2 and 3 rings. Ypsilanti, Michigan.

F. E. WESTFALL, M. D.,
Physician and Surgeon, including Eye and Ear. Hours 8-10, 1-3, 7-8. Quirk Bldg., N. Washington Street.

DR. THOMAS SHAW,
Diseases of Women and Chronic Complaints. Electric and Massage Treatments. Office hours, 8-9 a.m., 25 p.m., 7-9 p.m. 104 Adams. Telephone.

DR. J. C. GARRETT, D. O.
Office 103 W. Congress Street. Office hours, 9 to 11 a.m., 2 to 4 p.m. Phone 17-2 and 3 rings.

DENTISTS

DeWITT SPALSBURY, D. D. S.

H. J. MORRISON, D. D. S.
Office 6 N. Huron Street.

JOHN VAN FOSSEN, D. D. S.
Dental Office over Davis Grocery, Congress Street.

"GO TO MY FATHER."
"Go to my father" was all that she said;
And she knew that I knew that her father was
dead;
And she knew that I knew the gay life he had led;
And she knew that I knew what she meant when
she said:
"Go to my father."

Teacher—"Now then, Tommy, have you no good
excuse for staying away from school yesterday?"
Tommy—"Well, it wasn’t my fault."
Teacher—"It wasn’t?"
Tommy—"No, ma’am. I done my best to think
of one."

BUSINESS

E. HEWITT,
Insurance, Real Estate, Loans.
HEWITT BLOCK, 2d FLOOR.

KING & CO.
Groceries.
Store Cor. Congress and Huron.

A. W. ELLIOTT,
Wood, Coal and Feed.
Phone 277-2.
Office 317 Congress St.

JOE MILLER,
Practical Watchmaker. Watches, Jewelry and Spectacles. Fine Repairing a Specialty.
UNION BLOCK, YPSILANTI.
The Old Place.
HIXSON LUNCH ROOM.
Fred Hixson, Mngr. Always Open.

F. W. BERANEK,
Tailor.
Occidental Hotel Block.

VINCENT ARNET,
Merchant Tailor
Corner Congress and Huron Streets,
Ypsilanti, Michigan.

G. H. GILMORE & CO.
Phone 110.
No. 18 Washington Street.

WM. MALLION & SON.
All kinds of Fine Repairing. Bicycles and Umbrellas a Specialty.
16 SOUTH WASHINGTON ST.
BURKE BROS.
Up-to-date Sanitary Plumbing, Steam and Hot Water Heating. Agents for the Famous Block Light Gas Burner.

110 Pearl St. Phone 220.

"A polished gentleman is one who can be rubbed
the wrong way without getting hot.—Ex.

Doctor (to Scotch Butler)—"Well, Donald, is
your master’s temperature lower this morning?"
Donald—"I’m no sae sure about that. He died
last night."

Mamma (tearfully)—"Tommy, it gives me
much pain as it does you to publish you."
Tommy (also tearfully)—"Mebby it does, ma,
but not in the same place."
BRIGHT PROSPECTS FOR OIL.

The striking of gas crevices in the well now being put down on the Martin Cremer property in this city has caused many of the skeptics to change their views and become enthusiastic over the oil prospects, while the promoters are confident of ultimate success, if not in No. 1 well, then in one of those that will be put down later. There is no gainsaying the fact that the outlook is good and that the dream of Ypsilanti and outside towns ever since gas was struck at the old Moorman well back of the Occidental may come true, for the record of the different oil regions show that where there is gas, oil is certain to be found, somewhere in that vicinity.

Citizens generally have shown a loyalty in their belief that oil and gas will be found in this neighborhood and have subscribed some $4,000 or $5,000 to the capital needed to test the field between here and the Ohio state line. It is hoped that it will be found in this vicinity, but if not here experiments will be continued and the lucky town may be Belleville, Saline or some other place in the territory that will be tested.

From a material point of view it would give Ypsilanti a boom that it has never had before, as there are so many stockholders in the enterprise that would be benefited financially. A great deal of 50c in our "- " but we never

Write for further information.

BANNER OIL & GAS CO., Ypsilanti, Mich.
CONKLIN'S
Self Filling Pen.

Under Your Thumb
is the instantaneous cleaning and filling device which puts this pen in a distinct class by itself.

"The Pen That Fills Itself"
MANUFACTURED BY
THE CONKLIN PEN CO.-TOLEDO, O.
For Sale by
C. J. Barlow, D. Y. A. A. & J. Depot

HENRY AND KYER
709-711 N. University Ave.
Ann Arbor, Mich.

We cordially invite you to inspect our stock.

HATTERS GLOVERS

Instantaneous
Arbitrator

HOWE'S PARLIAMENTARY USAGE

By an ingenious visual arrangement of the whole subject-matter of practical parliamentary law, the chairman, the speaker, the member who next has the floor, or any one else, when he opens this book in the middle has before his eyes a complete summary of every rule needed in the conduct of any meeting. It slips easily into and out of the pocket. Exactly suited to women's clubs, too, being used and recommended by officials of the General Federation, and the W. C. T. U. Societies. (on approval if desired.)

HINDS & NOBLE, Publishers of
Pros and Cons (complete debates), $1.50
Commencement Parts (for all occasions), $1.00
31-33-35 West 18th St., New York City

In addition to a large and carefully selected stock of

Watches Diamonds Jewelry Clocks Cut Glass and China

Suitable for CHRISTMAS GIFTS

We have M. N. C. Spoons and other Souvenirs of the College. Prices very low.

Frank Showerman,
9 Huron St. JEWELER

ALUMNI

Four thousand graduates have gone forth from the Normal College.

The News is planning to locate them and bind them together into a great army of loyal Normal workers.

Send us the addresses of all whom you know.
THE "COUFFIELD" (Rapid Transit in Your Office)

Unit Sectional Files

We are fully equipped to furnish Card Systems of any kind and for any purpose.

Afford the most practical and convenient method for filing correspondence, card systems and papers of every description. By installing "Couffield" systems in your office, you will avoid delays and annoyances, and in consequence, a saving of valuable time and a corresponding reduction in your payroll. "Couffield" cabinets are of unit sectional construction—you add as required. You can start with a one drawer section for 100 cards and build up to a large system—an exclusive feature of the "Couffield" cabinets.

A request on your business letter-head will bring our catalog "A-70," with full information. And remember, that "Couffield Pays the Freight!"

H. L. COUFFIELD CO.
258 St., Grand Rapids, Mich.
(Furniture Center of the World)

FACTORY LOADED SMOKELESS POWDER SHOTGUN SHELLS

Good shells in your gun mean a good bag in the field or a good score at the trap. Winchester "Leader" and "Repeater" Smokeless Powder Shells are good shells. Always sure-fire, always giving an even spread of shot and good penetration, their great superiority is testified to by sportsmen who use Winchester Factory Loaded Shells in preference to any other make.

ALL DEALERS KEEP THEM
The Normal Book Store

Will furnish on short notice any book published. If you want information in regard to books or school supplies, call or write.

Mail Orders will receive Special Attention.

We can furnish everything needed in the school room.

Between issues — of the —

THE NEWS

— read the —

EVENING PRESS

All the Normal and Home News that's worth reading