Differential cross-section surfaces for low-energy scattering of electrons and positrons from rare-gas atoms

Document Type


Publication Date



Physics and Astronomy


The differential cross sections for scattering of electrons and positrons from He, Ne, Ar, Kr, and Xe at projectile energies below the inelastic thresholds are calculated using a model potential approach in which the interaction between the projectile and the target atom is partitioned into static, exchange (for electrons), and correlation-polarization parts. Two different forms of the parameter-free correlation-polarization potential are suggested; in both cases the correlation-polarization potential is determined by smoothly matching the asymptotic form of the polarization potential (similar to 1/r(4)) to the correlation potential at the outermost orbital radius of the target atom. The results of angular distributions are presented in the form of contours of constant differential cross sections as well as in the form of differential cross section surfaces in three-dimensional plots. Both of these presentations display the locations of the principal maxima and minima of the differential cross sections as well as the critical points in a very useful manner.

Link to Published Version