Date Approved
2018
Degree Type
Open Access Senior Honors Thesis
Department or School
Biology
First Advisor
Kristin Judd
Second Advisor
Aaron Liepman
Third Advisor
Marianne Laporte
Abstract
Wetlands provide a number of important ecosystem services, but their anoxic conditions also favor the production of several greenhouse gases. Wetlands are an ideal environment for methanogenesis, the process by which carbon dioxide is reduced to methane by wetland microbes (methanogens). As wetlands are the largest natural contributor to the atmospheric methane pool, it is important to understand variables that control wetland methane production. Nitrogen availability is one variable that likely affects methanogen communities. Nitrate drains from agricultural areas, where wetlands act as a nitrogen sink, preventing nitrate from contaminating aquatic systems. Another factor that may affect wetland methanogenesis is vegetation type. In recent years, invasives such as exotic cattail (Typha angustifolia and Typha x glauca} and Phragmites have spread through wetlands, negatively impacting ecosystem processes. To determine the influence of nitrate availability and vegetation type on wetland methanogenesis, we incubated sediment from Phragmites and exotic cattail dominated stands, added increasing concentrations of nitrate, and measured methane production. We hypothesized that if nitrate allows methanogens to be outcompeted by another group of wetland microbes, denitrifiers, then we would observe decreased methane production with high nitrate concentrations.
Recommended Citation
Dempsey, Jaymes, "Effects of nutrient addition and two invasive plants on wetland methane production" (2018). Senior Honors Theses and Projects. 605.
https://commons.emich.edu/honors/605