Date Approved

2006

Degree Type

Open Access Thesis

Degree Name

Master of Science (MS)

Department or School

Biology

Committee Member

James L. VandenBosch, PhD, Chair

Committee Member

Geoffrey G. Murphy, PhD, Project Supervisor

Committee Member

Tamara Greco, PhD, Member

Abstract

Of the many signaling pathways found within neurons, calcium signaling is perhaps the most ubiquitous and versatile. Calcium influx through L-type voltage-gated calcium channels (L-VGCCs) is involved in numerous aspects of neuronal function: activation and regulation of gene transcription, synaptic plasticity, and regulation of neuronal excitability are all modulated by calcium. Because many calcium-related subcellular functions are implicated in the formation and storage of long-term memory, this writer investigated the role of an L-VGCC, CaV1.2, in hippocampus-dependent learning and memory. Utilizing the Cre/loxP gene-targeting system, the CaV1.2 L-VGCC isoform was conditionally deleted in the forebrain of mice. This extensive deletion was confirmed by RT-PCR and Immunoblotting. To test for spatial learning and memory, a series of Morris water maze experiments were performed. Knockout mice showed no deficits in short-term (24-hr) memory trials; however, on a 30-day memory probe, knockout mice performed significantly more poorly than their littermate controls. These results indicate the importance of forebrainspecific CaV1.2 for long-term spatial memory.

Comments

Additional committee member: Glenn K. Walker, PhD, Member

Included in

Biology Commons

Share

COinS