Date Approved
2019
Degree Type
Open Access Thesis
Degree Name
Master of Science (MS)
Department or School
Biology
Committee Member
Katherine Greenwald, Ph.D.
Committee Member
Steve Francoeur, Ph.D.
Committee Member
Kristin Judd, Ph.D.
Abstract
The mudpuppy (Necturus maculosus) is cryptic, fully aquatic salamander within the Great Lakes region. Once abundant throughout its range, evidence now suggests that there have been declines due to habitat loss and lampricide use. Information on the status of mudpuppies along the St. Clair-Detroit River System (SCDRS) is lacking, and since they are important bio-indicators, they could be a gauge for restoration success. Environmental DNA (eDNA) and occupancy modeling were used to determine best detection practices for this cryptic species. Mudpuppy eDNA was detected at all known mudpuppy sites with the addition of one site. Occupancy was highest at shoreline restoration sites, while reef restoration did not affect mudpuppy occupancy. Additionally, eDNA resulted in the highest detection probability. Restoration efforts have shown to be successful by increasing the occupancy of this indicator species; therefore, these efforts should be used as a template for other restoration practices.
Recommended Citation
Sutherland, Jenny L., "Assessment of mudpuppy (Necturus maculosus) presence along the St. Clair-Detroit River System using environmental DNA and occupancy modeling" (2019). Master's Theses and Doctoral Dissertations. 974.
https://commons.emich.edu/theses/974